Cargando…

A Recombinant Avian Infectious Bronchitis Virus Expressing a Heterologous Spike Gene Belonging to the 4/91 Serotype

We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41 [1]. We have constructed a recombi...

Descripción completa

Detalles Bibliográficos
Autores principales: Armesto, Maria, Evans, Sharon, Cavanagh, David, Abu-Median, Abu-Bakr, Keep, Sarah, Britton, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166170/
https://www.ncbi.nlm.nih.gov/pubmed/21912629
http://dx.doi.org/10.1371/journal.pone.0024352
Descripción
Sumario:We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41 [1]. We have constructed a recombinant IBV, BeauR-4/91(S), with the genetic backbone of Beau-R but expressing the spike protein of the pathogenic IBV strain 4/91(UK), which belongs to a different serogroup as Beaudette or M41. Similar to our previous findings with BeauR-M41(S), clinical signs observations showed that the S gene of the pathogenic 4/91 virus did not confer pathogenicity to the rIBV BeauR-4/91(S). Furthermore, protection studies showed there was homologous protection; BeauR-4/91(S) conferred protection against challenge with wild type 4/91 virus as shown by the absence of clinical signs, IBV RNA assessed by qRT-PCR and the fact that no virus was isolated from tracheas removed from birds primarily infected with BeauR-4/91(S) and challenged with IBV 4/91(UK). A degree of heterologous protection against M41 challenge was observed, albeit at a lower level. Our results confirm and extend our previous findings and conclusions that swapping of the ectodomain of the S protein is a precise and effective way of generating genetically defined candidate IBV vaccines.