Cargando…

Functional Polymorphism of the Mu-Opioid Receptor Gene (OPRM1) Influences Reinforcement Learning in Humans

Previous reports on the functional effects (i.e., gain or loss of function), and phenotypic outcomes (e.g., changes in addiction vulnerability and stress response) of a commonly occurring functional single nucleotide polymorphism (SNP) of the mu-opioid receptor (OPRM1 A118G) have been inconsistent....

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Mary R., Gallen, Courtney L., Zhang, Xiaochu, Hodgkinson, Colin A., Goldman, David, Stein, Elliot A., Barr, Christina S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166306/
https://www.ncbi.nlm.nih.gov/pubmed/21912675
http://dx.doi.org/10.1371/journal.pone.0024203
Descripción
Sumario:Previous reports on the functional effects (i.e., gain or loss of function), and phenotypic outcomes (e.g., changes in addiction vulnerability and stress response) of a commonly occurring functional single nucleotide polymorphism (SNP) of the mu-opioid receptor (OPRM1 A118G) have been inconsistent. Here we examine the effect of this polymorphism on implicit reward learning. We used a probabilistic signal detection task to determine whether this polymorphism impacts response bias to monetary reward in 63 healthy adult subjects: 51 AA homozygotes and 12 G allele carriers. OPRM1 AA homozygotes exhibited typical responding to the rewarded response—that is, their bias to the rewarded stimulus increased over time. However, OPRM1 G allele carriers exhibited a decline in response to the rewarded stimulus compared to the AA homozygotes. These results extend previous reports on the heritability of performance on this task by implicating a specific polymorphism. Through comparison with other studies using this task, we suggest a possible mechanism by which the OPRM1 polymorphism may confer reduced response to natural reward through a dopamine-mediated decrease during positive reinforcement learning.