Cargando…

Protection of repetitive DNA borders from self-induced meiotic instability

DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initi...

Descripción completa

Detalles Bibliográficos
Autores principales: Vader, Gerben, Blitzblau, Hannah G., Tame, Mihoko A., Falk, Jill E., Curtin, Lisa, Hochwagen, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166416/
https://www.ncbi.nlm.nih.gov/pubmed/21822291
http://dx.doi.org/10.1038/nature10331
Descripción
Sumario:DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, due to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination (1). Within the budding yeast repetitive ribosomal (r)DNA array, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin (2,3). Here, we demonstrate that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity within the rDNA array. We find that this localised DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination specifically increased in the outermost rDNA repeats, leading to NAHR and rDNA instability. Strikingly, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2Δ cells. Thus, while Sir2 activity globally prevents meiotic DSBs within the rDNA, it creates a highly permissive environment for DSB formation at the heterochromatin/euchromatin junctions. Heterochromatinised repetitive DNA arrays are abundantly present in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, whose protection may be a universal requirement to prevent meiotic genome rearrangements associated with genomic diseases and birth defects.