Cargando…
How and when should interactome-derived clusters be used to predict functional modules and protein function?
Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167697/ https://www.ncbi.nlm.nih.gov/pubmed/19770263 http://dx.doi.org/10.1093/bioinformatics/btp551 |
_version_ | 1782211275351130112 |
---|---|
author | Song, Jimin Singh, Mona |
author_facet | Song, Jimin Singh, Mona |
author_sort | Song, Jimin |
collection | PubMed |
description | Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis. Contact: msingh@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-3167697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-31676972011-09-06 How and when should interactome-derived clusters be used to predict functional modules and protein function? Song, Jimin Singh, Mona Bioinformatics Original Papers Motivation: Clustering of protein–protein interaction networks is one of the most common approaches for predicting functional modules, protein complexes and protein functions. But, how well does clustering perform at these tasks? Results: We develop a general framework to assess how well computationally derived clusters in physical interactomes overlap functional modules derived via the Gene Ontology (GO). Using this framework, we evaluate six diverse network clustering algorithms using Saccharomyces cerevisiae and show that (i) the performances of these algorithms can differ substantially when run on the same network and (ii) their relative performances change depending upon the topological characteristics of the network under consideration. For the specific task of function prediction in S.cerevisiae, we demonstrate that, surprisingly, a simple non-clustering guilt-by-association approach outperforms widely used clustering-based approaches that annotate a protein with the overrepresented biological process and cellular component terms in its cluster; this is true over the range of clustering algorithms considered. Further analysis parameterizes performance based on the number of annotated proteins, and suggests when clustering approaches should be used for interactome functional analyses. Overall our results suggest a re-examination of when and how clustering approaches should be applied to physical interactomes, and establishes guidelines by which novel clustering approaches for biological networks should be justified and evaluated with respect to functional analysis. Contact: msingh@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2009-12-01 2009-09-21 /pmc/articles/PMC3167697/ /pubmed/19770263 http://dx.doi.org/10.1093/bioinformatics/btp551 Text en © The Author(s) 2009. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Song, Jimin Singh, Mona How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title | How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title_full | How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title_fullStr | How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title_full_unstemmed | How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title_short | How and when should interactome-derived clusters be used to predict functional modules and protein function? |
title_sort | how and when should interactome-derived clusters be used to predict functional modules and protein function? |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167697/ https://www.ncbi.nlm.nih.gov/pubmed/19770263 http://dx.doi.org/10.1093/bioinformatics/btp551 |
work_keys_str_mv | AT songjimin howandwhenshouldinteractomederivedclustersbeusedtopredictfunctionalmodulesandproteinfunction AT singhmona howandwhenshouldinteractomederivedclustersbeusedtopredictfunctionalmodulesandproteinfunction |