Cargando…
Mechanism of Actin Filament Nucleation by the Bacterial Effector VopL
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected by bacteria into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich Homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168117/ https://www.ncbi.nlm.nih.gov/pubmed/21873984 http://dx.doi.org/10.1038/nsmb.2110 |
Sumario: | Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected by bacteria into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich Homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own, and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, which is stabilized by a terminal coiled-coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model where VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors. |
---|