Cargando…
A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose
Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehens...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171112/ https://www.ncbi.nlm.nih.gov/pubmed/21941478 http://dx.doi.org/10.3389/fnene.2011.00005 |
_version_ | 1782211717477957632 |
---|---|
author | Amaral, Ana I. Teixeira, Ana P. Håkonsen, Bjørn I. Sonnewald, Ursula Alves, Paula M. |
author_facet | Amaral, Ana I. Teixeira, Ana P. Håkonsen, Bjørn I. Sonnewald, Ursula Alves, Paula M. |
author_sort | Amaral, Ana I. |
collection | PubMed |
description | Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C-labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time points were then analyzed by mass spectrometry and/or high performance liquid chromatography. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase [PC; PC/pyruvate dehydrogenase (PDH) ratio = 0.5], malic enzyme (5% of the total pyruvate production), and catabolism of branched-chained amino acids (contributing with ∼40% to total acetyl-CoA produced) confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate–aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (∼0.7 μmol mg prot−1 h−1) was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of energy metabolism. |
format | Online Article Text |
id | pubmed-3171112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31711122011-09-22 A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose Amaral, Ana I. Teixeira, Ana P. Håkonsen, Bjørn I. Sonnewald, Ursula Alves, Paula M. Front Neuroenergetics Neuroscience Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C-labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time points were then analyzed by mass spectrometry and/or high performance liquid chromatography. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase [PC; PC/pyruvate dehydrogenase (PDH) ratio = 0.5], malic enzyme (5% of the total pyruvate production), and catabolism of branched-chained amino acids (contributing with ∼40% to total acetyl-CoA produced) confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate–aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (∼0.7 μmol mg prot−1 h−1) was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of energy metabolism. Frontiers Research Foundation 2011-09-07 /pmc/articles/PMC3171112/ /pubmed/21941478 http://dx.doi.org/10.3389/fnene.2011.00005 Text en Copyright © 2011 Amaral, Teixeira, Håkonsen, Sonnewald and Alves. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with. |
spellingShingle | Neuroscience Amaral, Ana I. Teixeira, Ana P. Håkonsen, Bjørn I. Sonnewald, Ursula Alves, Paula M. A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title | A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title_full | A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title_fullStr | A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title_full_unstemmed | A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title_short | A Comprehensive Metabolic Profile of Cultured Astrocytes Using Isotopic Transient Metabolic Flux Analysis and (13)C-Labeled Glucose |
title_sort | comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and (13)c-labeled glucose |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171112/ https://www.ncbi.nlm.nih.gov/pubmed/21941478 http://dx.doi.org/10.3389/fnene.2011.00005 |
work_keys_str_mv | AT amaralanai acomprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT teixeiraanap acomprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT hakonsenbjørni acomprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT sonnewaldursula acomprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT alvespaulam acomprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT amaralanai comprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT teixeiraanap comprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT hakonsenbjørni comprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT sonnewaldursula comprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose AT alvespaulam comprehensivemetabolicprofileofculturedastrocytesusingisotopictransientmetabolicfluxanalysisand13clabeledglucose |