Cargando…
Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors
BACKGROUND: The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173463/ https://www.ncbi.nlm.nih.gov/pubmed/21935440 http://dx.doi.org/10.1371/journal.pone.0024693 |
Sumario: | BACKGROUND: The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. METHODOLOGY/PRINCIPAL FINDINGS: Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7) into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7)]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. CONCLUSIONS: These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target. |
---|