Cargando…
Rhythmic Leptin Is Required for Weight Gain from Circadian Desynchronized Feeding in the Mouse
The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body wei...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176308/ https://www.ncbi.nlm.nih.gov/pubmed/21949859 http://dx.doi.org/10.1371/journal.pone.0025079 |
Sumario: | The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body weight regulation). Despite the extensive leptin literature and many observations of leptin’s cyclical pattern over the 24-hour day, few studies have specifically examined how the circadian rhythm of leptin may be essential to leptin signaling and health. Here we present data indicating that a rhythmic leptin profile (e.g. 1 peak every 24 hours) leads to excessive weight gain during desynchronized feeding whereas non-rhythmic leptin provided in a continuous manner does not lead to excessive body weight gain under similar feeding conditions. This study suggests that feeding time can interact with leptin’s endogenous rhythm to influence metabolic signals, specifically leading to excessive body weight gains during ‘wrongly’ timed feeding. |
---|