Cargando…

A Naturally Occurring Isoform Inhibits Parathyroid Hormone Receptor Trafficking and Signaling

Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (Δe14-PTHR) that encodes transmembrane domain 7. Δe14-PTHR was detected in human kidney and buccal epithe...

Descripción completa

Detalles Bibliográficos
Autores principales: Alonso, Verónica, Ardura, Juan A, Wang, Bin, Sneddon, W Bruce, Friedman, Peter A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Subscription Services, Inc., A Wiley Company 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179322/
https://www.ncbi.nlm.nih.gov/pubmed/20578167
http://dx.doi.org/10.1002/jbmr.167
Descripción
Sumario:Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (Δe14-PTHR) that encodes transmembrane domain 7. Δe14-PTHR was detected in human kidney and buccal epithelial cells. We characterized its topology, cellular localization, and signaling, as well as its interactions with PTHR. The C-terminus of the Δe14-PTHR is extracellular, and cell surface expression is strikingly reduced compared with the PTHR. Δe14-PTHR displayed impaired trafficking and accumulated in endoplasmic reticulum. Signaling and activation of cAMP and ERK by Δe14-PTHR was decreased significantly compared with PTHR. Δe14-PTHR acts as a functional dominant-negative by suppressing the action of PTHR. Cells cotransfected with both receptors exhibit markedly reduced PTHR cell membrane expression, colocalization with Δe14-PTHR in endoplasmic reticulum, and diminished cAMP activation and ERK phosphorylation in response to challenge with PTH. Δe14-PTHR forms heterodimers with PTHR, which may account for cytoplasmic retention of PTHR in the presence of Δe14-PTHR. Analysis of the PTHR heteronuclear RNA suggests that base-pair complementarity in introns surrounding exon 14 causes exon skipping and accounts for generation of the Δe14-PTHR isoform. Thus Δe14-PTHR is a poorly functional receptor that acts as a dominant-negative of PTHR trafficking and signaling and may contribute to PTH resistance. © 2011 American Society for Bone and Mineral Research.