Cargando…

Tumor cell-selective apoptosis induction through targeting of K(V)10.1 via bifunctional TRAIL antibody

BACKGROUND: The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel K(V)10.1 (Ether-á-go-go) is attractive as target since this surface protein is virtually not detected in normal tissue outside the central ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartung, Franziska, Stühmer, Walter, Pardo, Luis A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179451/
https://www.ncbi.nlm.nih.gov/pubmed/21899742
http://dx.doi.org/10.1186/1476-4598-10-109
Descripción
Sumario:BACKGROUND: The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel K(V)10.1 (Ether-á-go-go) is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. METHODS: We designed a single-chain antibody against an extracellular region of K(V)10.1 (scFv62) and fused it to the human soluble TRAIL. The K(V)10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. RESULTS: Prostate cancer cells, either positive or negative for K(V)10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in K(V)10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking K(V)10.1 expression. In co-cultures with K(V)10.1-positive cancer cells the fusion protein also induced apoptosis in bystander K(V)10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. CONCLUSIONS: K(V)10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a K(V)10.1-specific antibody.