Cargando…

5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals

5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-...

Descripción completa

Detalles Bibliográficos
Autores principales: McKinnon, Nicole K., Reeves, David C., Akabas, Myles H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182448/
https://www.ncbi.nlm.nih.gov/pubmed/21948949
http://dx.doi.org/10.1085/jgp.201110686
Descripción
Sumario:5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na(+)-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li(+), Na(+), ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li(+), ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein.