Cargando…
STEME: efficient EM to find motifs in large data sets
MEME and many other popular motif finders use the expectation–maximization (EM) algorithm to optimize their parameters. Unfortunately, the running time of EM is linear in the length of the input sequences. This can prohibit its application to data sets of the size commonly generated by high-throughp...
Autores principales: | Reid, John E., Wernisch, Lorenz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185442/ https://www.ncbi.nlm.nih.gov/pubmed/21785132 http://dx.doi.org/10.1093/nar/gkr574 |
Ejemplares similares
-
STEME: A Robust, Accurate Motif Finder for Large Data Sets
por: Reid, John E., et al.
Publicado: (2014) -
Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets
por: Toivonen, Jarkko, et al.
Publicado: (2018) -
Finding 3D motifs in ribosomal RNA structures
por: Apostolico, Alberto, et al.
Publicado: (2009) -
Finding subtypes of transcription factor motif pairs with distinct regulatory roles
por: Bais, Abha Singh, et al.
Publicado: (2011) -
Finding regulatory DNA motifs using alignment-free evolutionary conservation information
por: Gordân, Raluca, et al.
Publicado: (2010)