Cargando…
Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src
Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188385/ https://www.ncbi.nlm.nih.gov/pubmed/21716326 http://dx.doi.org/10.1038/jid.2011.188 |
_version_ | 1782213373443702784 |
---|---|
author | Alt-Holland, Addy Sowalsky, Adam Szwec-Levin, Yonit Shamis, Yulia Hatch, Harold Feig, Larry A. Garlick, Jonathan A. |
author_facet | Alt-Holland, Addy Sowalsky, Adam Szwec-Levin, Yonit Shamis, Yulia Hatch, Harold Feig, Larry A. Garlick, Jonathan A. |
author_sort | Alt-Holland, Addy |
collection | PubMed |
description | Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. |
format | Online Article Text |
id | pubmed-3188385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
record_format | MEDLINE/PubMed |
spelling | pubmed-31883852012-05-01 Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src Alt-Holland, Addy Sowalsky, Adam Szwec-Levin, Yonit Shamis, Yulia Hatch, Harold Feig, Larry A. Garlick, Jonathan A. J Invest Dermatol Article Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC. 2011-06-30 2011-11 /pmc/articles/PMC3188385/ /pubmed/21716326 http://dx.doi.org/10.1038/jid.2011.188 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Alt-Holland, Addy Sowalsky, Adam Szwec-Levin, Yonit Shamis, Yulia Hatch, Harold Feig, Larry A. Garlick, Jonathan A. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title | Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title_full | Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title_fullStr | Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title_full_unstemmed | Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title_short | Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through up-regulation of FAK and Src |
title_sort | suppression of e-cadherin function drives the early stages of ras-induced squamous cell carcinoma through up-regulation of fak and src |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188385/ https://www.ncbi.nlm.nih.gov/pubmed/21716326 http://dx.doi.org/10.1038/jid.2011.188 |
work_keys_str_mv | AT althollandaddy suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT sowalskyadam suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT szweclevinyonit suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT shamisyulia suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT hatchharold suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT feiglarrya suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc AT garlickjonathana suppressionofecadherinfunctiondrivestheearlystagesofrasinducedsquamouscellcarcinomathroughupregulationoffakandsrc |