Cargando…
A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains
Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192835/ https://www.ncbi.nlm.nih.gov/pubmed/22022282 http://dx.doi.org/10.1371/journal.pgen.1002322 |
_version_ | 1782213805787316224 |
---|---|
author | Avery, Christy L. He, Qianchuan North, Kari E. Ambite, Jose L. Boerwinkle, Eric Fornage, Myriam Hindorff, Lucia A. Kooperberg, Charles Meigs, James B. Pankow, James S. Pendergrass, Sarah A. Psaty, Bruce M. Ritchie, Marylyn D. Rotter, Jerome I. Taylor, Kent D. Wilkens, Lynne R. Heiss, Gerardo Lin, Dan Yu |
author_facet | Avery, Christy L. He, Qianchuan North, Kari E. Ambite, Jose L. Boerwinkle, Eric Fornage, Myriam Hindorff, Lucia A. Kooperberg, Charles Meigs, James B. Pankow, James S. Pendergrass, Sarah A. Psaty, Bruce M. Ritchie, Marylyn D. Rotter, Jerome I. Taylor, Kent D. Wilkens, Lynne R. Heiss, Gerardo Lin, Dan Yu |
author_sort | Avery, Christy L. |
collection | PubMed |
description | Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention. |
format | Online Article Text |
id | pubmed-3192835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31928352011-10-21 A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains Avery, Christy L. He, Qianchuan North, Kari E. Ambite, Jose L. Boerwinkle, Eric Fornage, Myriam Hindorff, Lucia A. Kooperberg, Charles Meigs, James B. Pankow, James S. Pendergrass, Sarah A. Psaty, Bruce M. Ritchie, Marylyn D. Rotter, Jerome I. Taylor, Kent D. Wilkens, Lynne R. Heiss, Gerardo Lin, Dan Yu PLoS Genet Research Article Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention. Public Library of Science 2011-10-13 /pmc/articles/PMC3192835/ /pubmed/22022282 http://dx.doi.org/10.1371/journal.pgen.1002322 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Avery, Christy L. He, Qianchuan North, Kari E. Ambite, Jose L. Boerwinkle, Eric Fornage, Myriam Hindorff, Lucia A. Kooperberg, Charles Meigs, James B. Pankow, James S. Pendergrass, Sarah A. Psaty, Bruce M. Ritchie, Marylyn D. Rotter, Jerome I. Taylor, Kent D. Wilkens, Lynne R. Heiss, Gerardo Lin, Dan Yu A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title | A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title_full | A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title_fullStr | A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title_full_unstemmed | A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title_short | A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains |
title_sort | phenomics-based strategy identifies loci on apoc1, brap, and plcg1 associated with metabolic syndrome phenotype domains |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192835/ https://www.ncbi.nlm.nih.gov/pubmed/22022282 http://dx.doi.org/10.1371/journal.pgen.1002322 |
work_keys_str_mv | AT averychristyl aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT heqianchuan aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT northkarie aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT ambitejosel aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT boerwinkleeric aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT fornagemyriam aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT hindorffluciaa aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT kooperbergcharles aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT meigsjamesb aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT pankowjamess aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT pendergrasssaraha aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT psatybrucem aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT ritchiemarylynd aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT rotterjeromei aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT taylorkentd aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT wilkenslynner aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT heissgerardo aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT lindanyu aphenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT averychristyl phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT heqianchuan phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT northkarie phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT ambitejosel phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT boerwinkleeric phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT fornagemyriam phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT hindorffluciaa phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT kooperbergcharles phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT meigsjamesb phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT pankowjamess phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT pendergrasssaraha phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT psatybrucem phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT ritchiemarylynd phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT rotterjeromei phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT taylorkentd phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT wilkenslynner phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT heissgerardo phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains AT lindanyu phenomicsbasedstrategyidentifieslocionapoc1brapandplcg1associatedwithmetabolicsyndromephenotypedomains |