Cargando…
dFOXO-independent effects of reduced insulin-like signaling in Drosophila
The insulin/insulin-like growth factor-like signaling (IIS) pathway in metazoans has evolutionarily conserved roles in growth control, metabolic homeostasis, stress responses, reproduction, and lifespan. Genetic manipulations that reduce IIS in the nematode worm Caenorhabditis elegans, the fruit fly...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193374/ https://www.ncbi.nlm.nih.gov/pubmed/21443682 http://dx.doi.org/10.1111/j.1474-9726.2011.00707.x |
_version_ | 1782213837266616320 |
---|---|
author | Slack, Cathy Giannakou, Maria E Foley, Andrea Goss, Martin Partridge, Linda |
author_facet | Slack, Cathy Giannakou, Maria E Foley, Andrea Goss, Martin Partridge, Linda |
author_sort | Slack, Cathy |
collection | PubMed |
description | The insulin/insulin-like growth factor-like signaling (IIS) pathway in metazoans has evolutionarily conserved roles in growth control, metabolic homeostasis, stress responses, reproduction, and lifespan. Genetic manipulations that reduce IIS in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have been shown not only to produce substantial increases in lifespan but also to ameliorate several age-related diseases. In C. elegans, the multitude of phenotypes produced by the reduction in IIS are all suppressed in the absence of the worm FOXO transcription factor, DAF-16, suggesting that they are all under common regulation. It is not yet clear in other animal models whether the activity of FOXOs mediate all of the physiological effects of reduced IIS, especially increased lifespan. We have addressed this issue by examining the effects of reduced IIS in the absence of dFOXO in Drosophila, using a newly generated null allele of dfoxo. We found that the removal of dFOXO almost completely blocks IIS-dependent lifespan extension. However, unlike in C. elegans, removal of dFOXO does not suppress the body size, fecundity, or oxidative stress resistance phenotypes of IIS-compromised flies. In contrast, IIS-dependent xenobiotic resistance is fully dependent on dFOXO activity. Our results therefore suggest that there is evolutionary divergence in the downstream mechanisms that mediate the effects of IIS. They also imply that in Drosophila, additional factors act alongside dFOXO to produce IIS-dependent responses in body size, fecundity, and oxidative stress resistance and that these phenotypes are not causal in IIS-mediated extension of lifespan. |
format | Online Article Text |
id | pubmed-3193374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-31933742011-10-19 dFOXO-independent effects of reduced insulin-like signaling in Drosophila Slack, Cathy Giannakou, Maria E Foley, Andrea Goss, Martin Partridge, Linda Aging Cell Original Articles The insulin/insulin-like growth factor-like signaling (IIS) pathway in metazoans has evolutionarily conserved roles in growth control, metabolic homeostasis, stress responses, reproduction, and lifespan. Genetic manipulations that reduce IIS in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have been shown not only to produce substantial increases in lifespan but also to ameliorate several age-related diseases. In C. elegans, the multitude of phenotypes produced by the reduction in IIS are all suppressed in the absence of the worm FOXO transcription factor, DAF-16, suggesting that they are all under common regulation. It is not yet clear in other animal models whether the activity of FOXOs mediate all of the physiological effects of reduced IIS, especially increased lifespan. We have addressed this issue by examining the effects of reduced IIS in the absence of dFOXO in Drosophila, using a newly generated null allele of dfoxo. We found that the removal of dFOXO almost completely blocks IIS-dependent lifespan extension. However, unlike in C. elegans, removal of dFOXO does not suppress the body size, fecundity, or oxidative stress resistance phenotypes of IIS-compromised flies. In contrast, IIS-dependent xenobiotic resistance is fully dependent on dFOXO activity. Our results therefore suggest that there is evolutionary divergence in the downstream mechanisms that mediate the effects of IIS. They also imply that in Drosophila, additional factors act alongside dFOXO to produce IIS-dependent responses in body size, fecundity, and oxidative stress resistance and that these phenotypes are not causal in IIS-mediated extension of lifespan. Blackwell Publishing Ltd 2011-10 /pmc/articles/PMC3193374/ /pubmed/21443682 http://dx.doi.org/10.1111/j.1474-9726.2011.00707.x Text en Copyright © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Articles Slack, Cathy Giannakou, Maria E Foley, Andrea Goss, Martin Partridge, Linda dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title | dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title_full | dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title_fullStr | dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title_full_unstemmed | dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title_short | dFOXO-independent effects of reduced insulin-like signaling in Drosophila |
title_sort | dfoxo-independent effects of reduced insulin-like signaling in drosophila |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193374/ https://www.ncbi.nlm.nih.gov/pubmed/21443682 http://dx.doi.org/10.1111/j.1474-9726.2011.00707.x |
work_keys_str_mv | AT slackcathy dfoxoindependenteffectsofreducedinsulinlikesignalingindrosophila AT giannakoumariae dfoxoindependenteffectsofreducedinsulinlikesignalingindrosophila AT foleyandrea dfoxoindependenteffectsofreducedinsulinlikesignalingindrosophila AT gossmartin dfoxoindependenteffectsofreducedinsulinlikesignalingindrosophila AT partridgelinda dfoxoindependenteffectsofreducedinsulinlikesignalingindrosophila |