Cargando…
Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy
BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic sign...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194819/ https://www.ncbi.nlm.nih.gov/pubmed/22022585 http://dx.doi.org/10.1371/journal.pone.0026268 |
_version_ | 1782214055340015616 |
---|---|
author | Bando, Silvia Y. Alegro, Maryana C. Amaro, Edson Silva, Alexandre V. Castro, Luiz H. M. Wen, Hung-Tzu Lima, Leandro de A. Brentani, Helena Moreira-Filho, Carlos Alberto |
author_facet | Bando, Silvia Y. Alegro, Maryana C. Amaro, Edson Silva, Alexandre V. Castro, Luiz H. M. Wen, Hung-Tzu Lima, Leandro de A. Brentani, Helena Moreira-Filho, Carlos Alberto |
author_sort | Bando, Silvia Y. |
collection | PubMed |
description | BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions. |
format | Online Article Text |
id | pubmed-3194819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31948192011-10-21 Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy Bando, Silvia Y. Alegro, Maryana C. Amaro, Edson Silva, Alexandre V. Castro, Luiz H. M. Wen, Hung-Tzu Lima, Leandro de A. Brentani, Helena Moreira-Filho, Carlos Alberto PLoS One Research Article BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions. Public Library of Science 2011-10-14 /pmc/articles/PMC3194819/ /pubmed/22022585 http://dx.doi.org/10.1371/journal.pone.0026268 Text en Bando et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bando, Silvia Y. Alegro, Maryana C. Amaro, Edson Silva, Alexandre V. Castro, Luiz H. M. Wen, Hung-Tzu Lima, Leandro de A. Brentani, Helena Moreira-Filho, Carlos Alberto Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title | Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title_full | Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title_fullStr | Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title_full_unstemmed | Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title_short | Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy |
title_sort | hippocampal ca3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194819/ https://www.ncbi.nlm.nih.gov/pubmed/22022585 http://dx.doi.org/10.1371/journal.pone.0026268 |
work_keys_str_mv | AT bandosilviay hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT alegromaryanac hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT amaroedson hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT silvaalexandrev hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT castroluizhm hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT wenhungtzu hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT limaleandrodea hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT brentanihelena hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy AT moreirafilhocarlosalberto hippocampalca3transcriptomesignaturecorrelateswithinitialprecipitatinginjuryinrefractorymesialtemporallobeepilepsy |