Cargando…

A Low-Cost Library Construction Protocol and Data Analysis Pipeline for Illumina-Based Strand-Specific Multiplex RNA-Seq

The emergence of NextGen sequencing technology has generated much interest in the exploration of transcriptomes. Currently, Illumina Inc. (San Diego, CA) provides one of the most widely utilized sequencing platforms for gene expression analysis. While Illumina reagents and protocols perform adequate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lin, Si, Yaqing, Dedow, Lauren K., Shao, Ying, Liu, Peng, Brutnell, Thomas P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198403/
https://www.ncbi.nlm.nih.gov/pubmed/22039485
http://dx.doi.org/10.1371/journal.pone.0026426
Descripción
Sumario:The emergence of NextGen sequencing technology has generated much interest in the exploration of transcriptomes. Currently, Illumina Inc. (San Diego, CA) provides one of the most widely utilized sequencing platforms for gene expression analysis. While Illumina reagents and protocols perform adequately in RNA-sequencing (RNA-seq), alternative reagents and protocols promise a higher throughput at a much lower cost. We have developed a low-cost and robust protocol to produce Illumina-compatible (GAIIx and HiSeq2000 platforms) RNA-seq libraries by combining several recent improvements. First, we designed balanced adapter sequences for multiplexing of samples; second, dUTP incorporation in 2(nd) strand synthesis was used to enforce strand-specificity; third, we simplified RNA purification, fragmentation and library size-selection steps thus drastically reducing the time and increasing throughput of library construction; fourth, we included an RNA spike-in control for validation and normalization purposes. To streamline informatics analysis for the community, we established a pipeline within the iPlant Collaborative. These scripts are easily customized to meet specific research needs and improve on existing informatics and statistical treatments of RNA-seq data. In particular, we apply significance tests for determining differential gene expression and intron retention events. To demonstrate the potential of both the library-construction protocol and data-analysis pipeline, we characterized the transcriptome of the rice leaf. Our data supports novel gene models and can be used to improve current rice genome annotation. Additionally, using the rice transcriptome data, we compared different methods of calculating gene expression and discuss the advantages of a strand-specific approach to detect bona-fide anti-sense transcripts and to detect intron retention events. Our results demonstrate the potential of this low cost and robust method for RNA-seq library construction and data analysis.