Cargando…

Myocardin-Related Transcription Factors-A and -B are Key Regulators of TGF-β1-Induced Fibroblast to Myofibroblast Differentiation

Myofibroblasts are contractile, smooth muscle-like cells that are characterized by the de novo expression of smooth muscle α-actin (SMαA) and normally function to assist in wound closure, but have been implicated in pathological contractures. Transforming growth factor beta-1 (TGF-β1) helps facilita...

Descripción completa

Detalles Bibliográficos
Autores principales: Crider, Beverly J., Risinger, George M., Haaksma, Carol J., Howard, Eric W., Tomasek, James J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199034/
https://www.ncbi.nlm.nih.gov/pubmed/21776010
http://dx.doi.org/10.1038/jid.2011.219
Descripción
Sumario:Myofibroblasts are contractile, smooth muscle-like cells that are characterized by the de novo expression of smooth muscle α-actin (SMαA) and normally function to assist in wound closure, but have been implicated in pathological contractures. Transforming growth factor beta-1 (TGF-β1) helps facilitate the differentiation of fibroblasts into myofibroblasts, but the exact mechanism by which this differentiation occurs, in response to TGF-β1, remains unclear. Myocardin-related transcription factors-A and -B (MRTFs, MRTF-A/B) are transcriptional co-activators that regulate the expression of smooth muscle-specific cytoskeletal proteins, including SMαA, in smooth muscle cells and fibroblasts. In this study, we demonstrate that TGF-β1 mediates myofibroblast differentiation and the expression of a contractile gene program through the actions of the MRTFs. Transient transfection of a constitutively-active MRTF-A induced an increase in the expression of SMαA and other smooth muscle-specific cytoskeletal proteins, and an increase in myofibroblast contractility, even in the absence of TGF-β1. MRTF-A/B knockdown, in TGF-β1 differentiated myofibroblasts, resulted in decreased smooth muscle-specific cytoskeletal protein expression levels and reduced contractile force generation, as well as a decrease in focal adhesion size and number. These results provide direct evidence that the MRTFs are mediators of myofibroblast differentiation in response to TGF-β1.