Cargando…

Bovine Herpesvirus Type 1 (BHV-1) U(L)49.5 Luminal Domain Residues 30 to 32 Are Critical for MHC-I Down-Regulation in Virus-Infected Cells

Bovine herpesvirus type 1 (BHV-1) U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. We have constructed a BHV-1 U(L)49.5 cytoplasmic tail (CT) null a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Huiyong, Wang, Ying, Chowdhury, Shafiqul I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202525/
https://www.ncbi.nlm.nih.gov/pubmed/22046246
http://dx.doi.org/10.1371/journal.pone.0025742
Descripción
Sumario:Bovine herpesvirus type 1 (BHV-1) U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. We have constructed a BHV-1 U(L)49.5 cytoplasmic tail (CT) null and several U(L)49.5 luminal domain mutants in the backbone of wild-type BHV-1 or BHV-1 U(L)49.5 CT- null viruses and determined their relative TAP mediated peptide transport inhibition and MHC-1 down-regulation properties compared with BHV-1 wt. Based on our results, the U(L)49.5 luminal domain residues 30–32 and U(L)49.5 CT residues, together, promote efficient TAP inhibition and MHC-I down-regulation functions. In vitro, BHV-1 U(L)49.5 Δ30–32 CT-null virus growth property was similar to that of BHV-1 wt and like the wt U(L)49.5, the mutant U(L)49.5 was incorporated in the virion envelope and it formed a complex with gM in the infected cells.