Cargando…

Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells

Glycosyltransferases (GTs) are ubiquitous enzymes that catalyze the assembly of glycoconjugates found throughout all kingdoms of nature. A longstanding problem is the rational design of probes that can be used to manipulate GT activity in cells and tissues. Here we describe the rational design and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gloster, Tracey M., Zandberg, Wesley F., Heinonen, Julia E., Shen, David L., Deng, Lehua, Vocadlo, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202988/
https://www.ncbi.nlm.nih.gov/pubmed/21258330
http://dx.doi.org/10.1038/nchembio.520
Descripción
Sumario:Glycosyltransferases (GTs) are ubiquitous enzymes that catalyze the assembly of glycoconjugates found throughout all kingdoms of nature. A longstanding problem is the rational design of probes that can be used to manipulate GT activity in cells and tissues. Here we describe the rational design and synthesis of a nucleotide sugar analogue that inhibits, with high potency both in vitro and in cells, the human GT responsible for the reversible post-translational modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc). We show the enzymes of the hexosamine biosynthetic pathway can transform, both in vitro and in cells, a synthetic carbohydrate precursor into the nucleotide sugar analogue. Treatment of cells with the precursor decreases O-GlcNAc in a targeted manner with a single digit micromolar EC(50). This approach to inhibition of GTs should be applicable to other members of this increasingly interesting superfamily of enzymes and enable their manipulation in a biological setting.