Cargando…
Study of the vertical transport in p-doped superlattices based on group III-V semiconductors
The electrical conductivity σ has been calculated for p-doped GaAs/Al(0.3)Ga(0.7)As and cubic GaN/Al(0.3)Ga(0.7)N thin superlattices (SLs). The calculations are done within a self-consistent approach to the [Formula: see text] theory by means of a full six-band Luttinger-Kohn Hamiltonian, together w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211228/ https://www.ncbi.nlm.nih.gov/pubmed/21711699 http://dx.doi.org/10.1186/1556-276X-6-175 |
Sumario: | The electrical conductivity σ has been calculated for p-doped GaAs/Al(0.3)Ga(0.7)As and cubic GaN/Al(0.3)Ga(0.7)N thin superlattices (SLs). The calculations are done within a self-consistent approach to the [Formula: see text] theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential. |
---|