Cargando…

Canalization effect in the coagulation cascade and the interindividual variability of oral anticoagulant response. a simulation Study

BACKGROUND: Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. We explore numerically the hypothesis t...

Descripción completa

Detalles Bibliográficos
Autores principales: Corlan, Alexandru D, Ross, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215663/
https://www.ncbi.nlm.nih.gov/pubmed/22082142
http://dx.doi.org/10.1186/1742-4682-8-37
Descripción
Sumario:BACKGROUND: Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. We explore numerically the hypothesis that the effect of the interindividual expression variability of coagulation proteins, which does not usually result in a variability of the coagulation times in untreated subjects, is unmasked by OAT. RESULTS: We developed a stochastic variant of the Hockin-Mann model of the tissue factor coagulation pathway, using literature data for the variability of coagulation protein levels in the blood of normal subjects. We simulated in vitro coagulation and estimated the Prothrombin Time and the INR across a model population. In a model of untreated subjects a "canalization effect" can be observed in that a coefficient of variation of up to 33% of each protein level results in a simulated INR of 1 with a clinically irrelevant dispersion of 0.12. When the mean and the standard deviation of vitamin-K dependent protein levels were reduced by 80%, corresponding to the usual Warfarin treatment intensity, the simulated INR was 2.98 ± 0.48, a clinically relevant dispersion, corresponding to a reduction of the canalization effect. Then we combined the Hockin-Mann stochastic model with our previously published model of population response to Warfarin, that takes into account the genetical and the phenotypical variability of Warfarin pharmacokinetics and pharmacodynamics. We used the combined model to evaluate the coagulation protein variability effect on the variability of the Warfarin dose required to reach an INR target of 2.5. The dose variance when removing the coagulation protein variability was 30% lower. The dose was mostly related to the pretreatment levels of factors VII, X, and the tissue factor pathway inhibitor (TFPI). CONCLUSIONS: It may be worth exploring in experimental studies whether the pretreatment levels of coagulation proteins, in particular VII, X and TFPI, are predictors of the individual warfarin dose, even though, maybe due to a canalization-type effect, their effect on the INR variance in untreated subjects appears low.