Cargando…
Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations
Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215709/ https://www.ncbi.nlm.nih.gov/pubmed/22110631 http://dx.doi.org/10.1371/journal.pone.0027352 |
_version_ | 1782216423790084096 |
---|---|
author | Prigione, Alessandro Hossini, Amir M. Lichtner, Björn Serin, Akdes Fauler, Beatrix Megges, Matthias Lurz, Rudi Lehrach, Hans Makrantonaki, Eugenia Zouboulis, Christos C. Adjaye, James |
author_facet | Prigione, Alessandro Hossini, Amir M. Lichtner, Björn Serin, Akdes Fauler, Beatrix Megges, Matthias Lurz, Rudi Lehrach, Hans Makrantonaki, Eugenia Zouboulis, Christos C. Adjaye, James |
author_sort | Prigione, Alessandro |
collection | PubMed |
description | Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. |
format | Online Article Text |
id | pubmed-3215709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32157092011-11-21 Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations Prigione, Alessandro Hossini, Amir M. Lichtner, Björn Serin, Akdes Fauler, Beatrix Megges, Matthias Lurz, Rudi Lehrach, Hans Makrantonaki, Eugenia Zouboulis, Christos C. Adjaye, James PLoS One Research Article Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. Public Library of Science 2011-11-14 /pmc/articles/PMC3215709/ /pubmed/22110631 http://dx.doi.org/10.1371/journal.pone.0027352 Text en Prigione et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Prigione, Alessandro Hossini, Amir M. Lichtner, Björn Serin, Akdes Fauler, Beatrix Megges, Matthias Lurz, Rudi Lehrach, Hans Makrantonaki, Eugenia Zouboulis, Christos C. Adjaye, James Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title | Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title_full | Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title_fullStr | Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title_full_unstemmed | Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title_short | Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations |
title_sort | mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived ips cells harboring chromosomal aberrations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215709/ https://www.ncbi.nlm.nih.gov/pubmed/22110631 http://dx.doi.org/10.1371/journal.pone.0027352 |
work_keys_str_mv | AT prigionealessandro mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT hossiniamirm mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT lichtnerbjorn mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT serinakdes mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT faulerbeatrix mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT meggesmatthias mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT lurzrudi mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT lehrachhans mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT makrantonakieugenia mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT zouboulischristosc mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations AT adjayejames mitochondrialassociatedcelldeathmechanismsareresettoanembryoniclikestateinageddonorderivedipscellsharboringchromosomalaberrations |