Cargando…

PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death

While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer...

Descripción completa

Detalles Bibliográficos
Autores principales: Hotfilder, M, Sondermann, P, Senß, A, van Valen, F, Jürgens, H, Vormoor, J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216036/
https://www.ncbi.nlm.nih.gov/pubmed/15685229
http://dx.doi.org/10.1038/sj.bjc.6602384
Descripción
Sumario:While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml(−1) FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo.