Cargando…

RA–RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression

After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal throug...

Descripción completa

Detalles Bibliográficos
Autores principales: Puttagunta, Radhika, Schmandke, André, Floriddia, Elisa, Gaub, Perrine, Fomin, Natalie, Ghyselinck, Norbert B., Di Giovanni, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216335/
https://www.ncbi.nlm.nih.gov/pubmed/21690307
http://dx.doi.org/10.1083/jcb.201102066
Descripción
Sumario:After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane–bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA–RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA–RAR-β–dependent proaxonal outgrowth and inhibitory NgR complex–dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury.