Cargando…
Somatic retrotransposition alters the genetic landscape of the human brain
Retrotransposons are mobile genetic elements that employ a germ line “copy-and-paste” mechanism to spread throughout metazoan genomes(1). At least 50% of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and diseas...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224101/ https://www.ncbi.nlm.nih.gov/pubmed/22037309 http://dx.doi.org/10.1038/nature10531 |
_version_ | 1782217340391260160 |
---|---|
author | Baillie, J. Kenneth Barnett, Mark W. Upton, Kyle R. Gerhardt, Daniel J. Richmond, Todd A. De Sapio, Fioravante Brennan, Paul Rizzu, Patrizia Smith, Sarah Fell, Mark Talbot, Richard T. Gustincich, Stefano Freeman, Thomas C. Mattick, John S. Hume, David A. Heutink, Peter Carninci, Piero Jeddeloh, Jeffrey A. Faulkner, Geoffrey J. |
author_facet | Baillie, J. Kenneth Barnett, Mark W. Upton, Kyle R. Gerhardt, Daniel J. Richmond, Todd A. De Sapio, Fioravante Brennan, Paul Rizzu, Patrizia Smith, Sarah Fell, Mark Talbot, Richard T. Gustincich, Stefano Freeman, Thomas C. Mattick, John S. Hume, David A. Heutink, Peter Carninci, Piero Jeddeloh, Jeffrey A. Faulkner, Geoffrey J. |
author_sort | Baillie, J. Kenneth |
collection | PubMed |
description | Retrotransposons are mobile genetic elements that employ a germ line “copy-and-paste” mechanism to spread throughout metazoan genomes(1). At least 50% of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease(2-3). Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells(4-5), excluding early embryo development and some malignancies(6-7). Recent reports of L1 expression(8-9) and copy number variation(10-11) (CNV) in the human brain suggest L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germ line mutations, as well as 7,743 putative somatic L1 insertions in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 and 1,350 somatic Alu and SVA insertions, respectively. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. |
format | Online Article Text |
id | pubmed-3224101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
record_format | MEDLINE/PubMed |
spelling | pubmed-32241012012-05-24 Somatic retrotransposition alters the genetic landscape of the human brain Baillie, J. Kenneth Barnett, Mark W. Upton, Kyle R. Gerhardt, Daniel J. Richmond, Todd A. De Sapio, Fioravante Brennan, Paul Rizzu, Patrizia Smith, Sarah Fell, Mark Talbot, Richard T. Gustincich, Stefano Freeman, Thomas C. Mattick, John S. Hume, David A. Heutink, Peter Carninci, Piero Jeddeloh, Jeffrey A. Faulkner, Geoffrey J. Nature Article Retrotransposons are mobile genetic elements that employ a germ line “copy-and-paste” mechanism to spread throughout metazoan genomes(1). At least 50% of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease(2-3). Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells(4-5), excluding early embryo development and some malignancies(6-7). Recent reports of L1 expression(8-9) and copy number variation(10-11) (CNV) in the human brain suggest L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germ line mutations, as well as 7,743 putative somatic L1 insertions in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 and 1,350 somatic Alu and SVA insertions, respectively. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. 2011-10-30 /pmc/articles/PMC3224101/ /pubmed/22037309 http://dx.doi.org/10.1038/nature10531 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Baillie, J. Kenneth Barnett, Mark W. Upton, Kyle R. Gerhardt, Daniel J. Richmond, Todd A. De Sapio, Fioravante Brennan, Paul Rizzu, Patrizia Smith, Sarah Fell, Mark Talbot, Richard T. Gustincich, Stefano Freeman, Thomas C. Mattick, John S. Hume, David A. Heutink, Peter Carninci, Piero Jeddeloh, Jeffrey A. Faulkner, Geoffrey J. Somatic retrotransposition alters the genetic landscape of the human brain |
title | Somatic retrotransposition alters the genetic landscape of the human brain |
title_full | Somatic retrotransposition alters the genetic landscape of the human brain |
title_fullStr | Somatic retrotransposition alters the genetic landscape of the human brain |
title_full_unstemmed | Somatic retrotransposition alters the genetic landscape of the human brain |
title_short | Somatic retrotransposition alters the genetic landscape of the human brain |
title_sort | somatic retrotransposition alters the genetic landscape of the human brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224101/ https://www.ncbi.nlm.nih.gov/pubmed/22037309 http://dx.doi.org/10.1038/nature10531 |
work_keys_str_mv | AT bailliejkenneth somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT barnettmarkw somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT uptonkyler somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT gerhardtdanielj somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT richmondtodda somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT desapiofioravante somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT brennanpaul somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT rizzupatrizia somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT smithsarah somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT fellmark somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT talbotrichardt somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT gustincichstefano somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT freemanthomasc somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT mattickjohns somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT humedavida somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT heutinkpeter somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT carnincipiero somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT jeddelohjeffreya somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain AT faulknergeoffreyj somaticretrotranspositionaltersthegeneticlandscapeofthehumanbrain |