Cargando…
Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control
BACKGROUND: Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitoc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228860/ https://www.ncbi.nlm.nih.gov/pubmed/22029897 http://dx.doi.org/10.1186/1475-2875-10-318 |
_version_ | 1782217884104130560 |
---|---|
author | Pon, Jennifer Napoli, Eleonora Luckhart, Shirley Giulivi, Cecilia |
author_facet | Pon, Jennifer Napoli, Eleonora Luckhart, Shirley Giulivi, Cecilia |
author_sort | Pon, Jennifer |
collection | PubMed |
description | BACKGROUND: Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. METHODS: To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. RESULTS: The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP(+)-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) V(max )with NAD(+ )was 3-fold higher than that with NADP(+), (ii) addition of Mg(2+ )or Mn(2+ )increased the V(max )by 9- to 21-fold, with Mn(2+ )2.3-fold more effective than Mg(2+), (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD(+)-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate). CONCLUSIONS: The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development. |
format | Online Article Text |
id | pubmed-3228860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32288602011-12-02 Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control Pon, Jennifer Napoli, Eleonora Luckhart, Shirley Giulivi, Cecilia Malar J Research BACKGROUND: Anopheles stephensi mitochondrial malic enzyme (ME) emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE) cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. METHODS: To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE), mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. RESULTS: The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98%) and 59% homologous to the mitochondrial NADP(+)-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i) V(max )with NAD(+ )was 3-fold higher than that with NADP(+), (ii) addition of Mg(2+ )or Mn(2+ )increased the V(max )by 9- to 21-fold, with Mn(2+ )2.3-fold more effective than Mg(2+), (iii) succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv) among the analogs of L-malate tested as inhibitors of the NAD(+)-dependent ME catalyzed reaction, small (2- to 3-carbons) organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate). CONCLUSIONS: The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in bioenergetics, suggesting that it is a suitable target for insecticide development. BioMed Central 2011-10-26 /pmc/articles/PMC3228860/ /pubmed/22029897 http://dx.doi.org/10.1186/1475-2875-10-318 Text en Copyright ©2011 Pon et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Pon, Jennifer Napoli, Eleonora Luckhart, Shirley Giulivi, Cecilia Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title | Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title_full | Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title_fullStr | Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title_full_unstemmed | Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title_short | Mitochondrial NAD(+)-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control |
title_sort | mitochondrial nad(+)-dependent malic enzyme from anopheles stephensi: a possible novel target for malaria mosquito control |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228860/ https://www.ncbi.nlm.nih.gov/pubmed/22029897 http://dx.doi.org/10.1186/1475-2875-10-318 |
work_keys_str_mv | AT ponjennifer mitochondrialnaddependentmalicenzymefromanophelesstephensiapossiblenoveltargetformalariamosquitocontrol AT napolieleonora mitochondrialnaddependentmalicenzymefromanophelesstephensiapossiblenoveltargetformalariamosquitocontrol AT luckhartshirley mitochondrialnaddependentmalicenzymefromanophelesstephensiapossiblenoveltargetformalariamosquitocontrol AT giulivicecilia mitochondrialnaddependentmalicenzymefromanophelesstephensiapossiblenoveltargetformalariamosquitocontrol |