Cargando…

Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors

Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997) provide evidence of a lack of correlation between these fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Molavian, Hamid R., Kohandel, Mohammad, Milosevic, Michael, Sivaloganathan, Sivabal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235095/
https://www.ncbi.nlm.nih.gov/pubmed/22174768
http://dx.doi.org/10.1371/journal.pone.0028101
_version_ 1782218560634880000
author Molavian, Hamid R.
Kohandel, Mohammad
Milosevic, Michael
Sivaloganathan, Sivabal
author_facet Molavian, Hamid R.
Kohandel, Mohammad
Milosevic, Michael
Sivaloganathan, Sivabal
author_sort Molavian, Hamid R.
collection PubMed
description Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997) provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2) are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2) and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process) in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels.
format Online
Article
Text
id pubmed-3235095
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32350952011-12-15 Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors Molavian, Hamid R. Kohandel, Mohammad Milosevic, Michael Sivaloganathan, Sivabal PLoS One Research Article Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997) provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2) are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2) and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process) in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels. Public Library of Science 2011-12-09 /pmc/articles/PMC3235095/ /pubmed/22174768 http://dx.doi.org/10.1371/journal.pone.0028101 Text en Molavian et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Molavian, Hamid R.
Kohandel, Mohammad
Milosevic, Michael
Sivaloganathan, Sivabal
Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title_full Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title_fullStr Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title_full_unstemmed Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title_short Deriving Mechanisms Responsible for the Lack of Correlation between Hypoxia and Acidity in Solid Tumors
title_sort deriving mechanisms responsible for the lack of correlation between hypoxia and acidity in solid tumors
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235095/
https://www.ncbi.nlm.nih.gov/pubmed/22174768
http://dx.doi.org/10.1371/journal.pone.0028101
work_keys_str_mv AT molavianhamidr derivingmechanismsresponsibleforthelackofcorrelationbetweenhypoxiaandacidityinsolidtumors
AT kohandelmohammad derivingmechanismsresponsibleforthelackofcorrelationbetweenhypoxiaandacidityinsolidtumors
AT milosevicmichael derivingmechanismsresponsibleforthelackofcorrelationbetweenhypoxiaandacidityinsolidtumors
AT sivaloganathansivabal derivingmechanismsresponsibleforthelackofcorrelationbetweenhypoxiaandacidityinsolidtumors