Cargando…

Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation

Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as UV radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mitochondrial DNA polymerase (Polγ), a major constituen...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakthavatchalu, Vasudevan, Dey, Swatee, Xu, Yong, Noel, Teresa, Jungsuwadee, Paiboon, Holley, Aaron K., Dhar, Sanjit K., Batinic-Haberle, Ines, St Clair, Daret K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237716/
https://www.ncbi.nlm.nih.gov/pubmed/21909133
http://dx.doi.org/10.1038/onc.2011.407
Descripción
Sumario:Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as UV radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mitochondrial DNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57/BL6 mice exposed to UVB radiation, we demonstrate that MnSOD plays a critical role in preventing mtDNA damage by protecting the function of Polγ. Q-PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53(+/+) and p53(−/−) mice demonstrates an interaction between MnSOD, p53, and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD-dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic Mn(III)TE-2-PyP(5+). These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD plays a role along with p53 to prevent mtDNA damage.