Cargando…
Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239214/ https://www.ncbi.nlm.nih.gov/pubmed/21880594 http://dx.doi.org/10.1093/nar/gkr680 |
Sumario: | DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is thought to be guided by the C-terminal domains of the GyrA subunit of gyrase that wrap DNA around their perimeter and cause a DNA-crossing with a positive handedness. We show here that the C-terminal domains are in a downward-facing orientation in the absence of DNA, but swing up and rotate away from the gyrase body when DNA binds. The upward movement of the C-terminal domains is an early event in the catalytic cycle of gyrase that is triggered by binding of a G-segment, and first contacts of the DNA with the C-terminal domains, and contributes to T-segment capture and subsequent strand passage. |
---|