Cargando…
QSAR Study and Molecular Design of Open-Chain Enaminones as Anticonvulsant Agents
Present work employs the QSAR formalism to predict the ED(50) anticonvulsant activity of ringed-enaminones, in order to apply these relationships for the prediction of unknown open-chain compounds containing the same types of functional groups in their molecular structure. Two different modeling app...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257134/ https://www.ncbi.nlm.nih.gov/pubmed/22272137 http://dx.doi.org/10.3390/ijms12129354 |
Sumario: | Present work employs the QSAR formalism to predict the ED(50) anticonvulsant activity of ringed-enaminones, in order to apply these relationships for the prediction of unknown open-chain compounds containing the same types of functional groups in their molecular structure. Two different modeling approaches are applied with the purpose of comparing the consistency of our results: (a) the search of molecular descriptors via multivariable linear regressions; and (b) the calculation of flexible descriptors with the CORAL (CORrelation And Logic) program. Among the results found, we propose some potent candidate open-chain enaminones having ED(50) values lower than 10 mg·kg(−1) for corresponding pharmacological studies. These compounds are classified as Class 1 and Class 2 according to the Anticonvulsant Selection Project. |
---|