Cargando…

Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals

BACKGROUND: Inosine triphosphatase (ITPase) is encoded by the polymorphic gene ITPA and maintains low intracellular levels of the inosine nucleotides ITP and dITP. The most frequently reported polymorphisms are ITPA c.94C>A (rs 1127354) and ITPA c. 124+21 A>C (rs7270101). Some nucleoside-analo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bierau, Jörgen, Bakker, Jaap A., Schippers, Jolanda A., Grashorn, Janine A. C., Lindhout, Martijn, Lowe, Selwyn H., Paulussen, Aimée D. C., Verbon, Annelies
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260219/
https://www.ncbi.nlm.nih.gov/pubmed/22272297
http://dx.doi.org/10.1371/journal.pone.0030175
_version_ 1782221461618950144
author Bierau, Jörgen
Bakker, Jaap A.
Schippers, Jolanda A.
Grashorn, Janine A. C.
Lindhout, Martijn
Lowe, Selwyn H.
Paulussen, Aimée D. C.
Verbon, Annelies
author_facet Bierau, Jörgen
Bakker, Jaap A.
Schippers, Jolanda A.
Grashorn, Janine A. C.
Lindhout, Martijn
Lowe, Selwyn H.
Paulussen, Aimée D. C.
Verbon, Annelies
author_sort Bierau, Jörgen
collection PubMed
description BACKGROUND: Inosine triphosphatase (ITPase) is encoded by the polymorphic gene ITPA and maintains low intracellular levels of the inosine nucleotides ITP and dITP. The most frequently reported polymorphisms are ITPA c.94C>A (rs 1127354) and ITPA c. 124+21 A>C (rs7270101). Some nucleoside-analogues used in the treatment of HIV-seropositive (HIV+) patients are potential substrates for ITPase. Therefore, the frequency of ITPA SNPs and ITPase activity were studied in a population of HIV+-patients. METHODS: The study population consisted of 222 patients, predominantly Caucasian males, >95% using HAART. Erythrocyte ITPase activity was determined by measuring the formation of IMP from ITP. ITPA genotype was determined by sequencing genomic DNA. Distribution of ITPase activity, genotype-phenotype correlation and allele frequencies were compared to 198 control subjects. The effect of nucleoside analogues on ITPase activity was studied using lymphoblastic T-cell cultures and human recombinant ITPase. Enzyme kinetic experiments were performed on erythrocyte ITPase from HIV+ patients and controls. RESULTS: No difference was observed in the allele frequencies between the HIV+-cohort (± HAART) and the control population. HIV+ carriers of the wild type and ITPA c.94C>A had significantly lower ITPase activities than control subjects with the same genotype (p<0.005). This was not observed in ITPA c. 124+21 A>C carriers. Nucleoside analogues did not affect ITPase activity in cell culture and human recombinant ITPase. Conclusion: ITPA population genetics were identical in HIV+ and control populations. However, the majority of HIV+-patients had decreased erythrocyte ITPase activity compared to controls, probably due to decreased amounts of ITPase protein. It seems unlikely that ITPase activity is decreased due to nucleoside analogues (HAART). Long-term effects of HIV-infection altering ITPase protein expression or stability may explain the phenomenon observed.
format Online
Article
Text
id pubmed-3260219
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32602192012-01-23 Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals Bierau, Jörgen Bakker, Jaap A. Schippers, Jolanda A. Grashorn, Janine A. C. Lindhout, Martijn Lowe, Selwyn H. Paulussen, Aimée D. C. Verbon, Annelies PLoS One Research Article BACKGROUND: Inosine triphosphatase (ITPase) is encoded by the polymorphic gene ITPA and maintains low intracellular levels of the inosine nucleotides ITP and dITP. The most frequently reported polymorphisms are ITPA c.94C>A (rs 1127354) and ITPA c. 124+21 A>C (rs7270101). Some nucleoside-analogues used in the treatment of HIV-seropositive (HIV+) patients are potential substrates for ITPase. Therefore, the frequency of ITPA SNPs and ITPase activity were studied in a population of HIV+-patients. METHODS: The study population consisted of 222 patients, predominantly Caucasian males, >95% using HAART. Erythrocyte ITPase activity was determined by measuring the formation of IMP from ITP. ITPA genotype was determined by sequencing genomic DNA. Distribution of ITPase activity, genotype-phenotype correlation and allele frequencies were compared to 198 control subjects. The effect of nucleoside analogues on ITPase activity was studied using lymphoblastic T-cell cultures and human recombinant ITPase. Enzyme kinetic experiments were performed on erythrocyte ITPase from HIV+ patients and controls. RESULTS: No difference was observed in the allele frequencies between the HIV+-cohort (± HAART) and the control population. HIV+ carriers of the wild type and ITPA c.94C>A had significantly lower ITPase activities than control subjects with the same genotype (p<0.005). This was not observed in ITPA c. 124+21 A>C carriers. Nucleoside analogues did not affect ITPase activity in cell culture and human recombinant ITPase. Conclusion: ITPA population genetics were identical in HIV+ and control populations. However, the majority of HIV+-patients had decreased erythrocyte ITPase activity compared to controls, probably due to decreased amounts of ITPase protein. It seems unlikely that ITPase activity is decreased due to nucleoside analogues (HAART). Long-term effects of HIV-infection altering ITPase protein expression or stability may explain the phenomenon observed. Public Library of Science 2012-01-17 /pmc/articles/PMC3260219/ /pubmed/22272297 http://dx.doi.org/10.1371/journal.pone.0030175 Text en Bierau et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bierau, Jörgen
Bakker, Jaap A.
Schippers, Jolanda A.
Grashorn, Janine A. C.
Lindhout, Martijn
Lowe, Selwyn H.
Paulussen, Aimée D. C.
Verbon, Annelies
Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title_full Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title_fullStr Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title_full_unstemmed Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title_short Erythrocyte Inosine Triphosphatase Activity Is Decreased in HIV-Seropositive Individuals
title_sort erythrocyte inosine triphosphatase activity is decreased in hiv-seropositive individuals
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260219/
https://www.ncbi.nlm.nih.gov/pubmed/22272297
http://dx.doi.org/10.1371/journal.pone.0030175
work_keys_str_mv AT bieraujorgen erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT bakkerjaapa erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT schippersjolandaa erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT grashornjanineac erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT lindhoutmartijn erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT loweselwynh erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT paulussenaimeedc erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals
AT verbonannelies erythrocyteinosinetriphosphataseactivityisdecreasedinhivseropositiveindividuals