Cargando…

Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB

INTRODUCTION: Heat shock proteins (HSPs) are normally induced under environmental stress to serve as chaperones for maintenance of correct protein folding but they are often overexpressed in many cancers, including breast cancer. The expression of Hsp27, an ATP-independent small HSP, is associated w...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Li, Liu, Tsung-Ta, Wang, Hsiu-Huan, Hong, Hui-Mei, Yu, Alice L, Feng, Hsiang-Pu, Chang, Wen-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262214/
https://www.ncbi.nlm.nih.gov/pubmed/22023707
http://dx.doi.org/10.1186/bcr3042
_version_ 1782221698101149696
author Wei, Li
Liu, Tsung-Ta
Wang, Hsiu-Huan
Hong, Hui-Mei
Yu, Alice L
Feng, Hsiang-Pu
Chang, Wen-Wei
author_facet Wei, Li
Liu, Tsung-Ta
Wang, Hsiu-Huan
Hong, Hui-Mei
Yu, Alice L
Feng, Hsiang-Pu
Chang, Wen-Wei
author_sort Wei, Li
collection PubMed
description INTRODUCTION: Heat shock proteins (HSPs) are normally induced under environmental stress to serve as chaperones for maintenance of correct protein folding but they are often overexpressed in many cancers, including breast cancer. The expression of Hsp27, an ATP-independent small HSP, is associated with cell migration and drug resistance of breast cancer cells. Breast cancer stem cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24-CD44+ or high intracellular aldehyde dehydrogenase activity (ALDH+) and proved to be associated with radiation resistance and metastasis. However, the involvement of Hsp27 in the maintenance of BCSC is largely unknown. METHODS: Mitogen-activated protein kinase antibody array and Western blot were used to discover the expression of Hsp27 and its phosphorylation in ALDH + BCSCs. To study the involvement of Hsp27 in BCSC biology, siRNA mediated gene silencing and quercetin treatment were used to inhibit Hsp27 expression and the characters of BCSCs, which include ALDH+ population, mammosphere formation and cell migration, were analyzed simultaneously. The tumorigenicity of breast cancer cells after knockdown of Hsp27 was analyzed by xenograftment assay in NOD/SCID mice. The epithelial-mesenchymal transition (EMT) of breast cancer cells was analyzed by wound-healing assay and Western blot of snail, vimentin and E-cadherin expression. The activation of nuclear factor kappa B (NF-κB) was analyzed by luciferase-based reporter assay and nuclear translocation. RESULTS: Hsp27 and its phosphorylation were increased in ALDH+ BCSCs in comparison with ALDH- non-BCSCs. Knockdown of Hsp27 in breast cancer cells decreased characters of BCSCs, such as ALDH+ population, mammosphere formation and cell migration. In addition, the in vivo CSC frequency could be diminished in Hsp27 knockdown breast cancer cells. The inhibitory effects could also be observed in cells treated with quercetin, a plant flavonoid inhibitor of Hsp27, and it could be reversed by overexpression of Hsp27. Knockdown of Hsp27 also suppressed EMT signatures, such as decreasing the expression of snail and vimentin and increasing the expression of E-cadherin. Furthermore, knockdown of Hsp27 decreased the nuclear translocation as well as the activity of NF-κB in ALDH + BCSCs, which resulted from increasing expression of IκBα. Restored activation of NF-κB by knockdown of IκBα could reverse the inhibitory effect of Hsp27 siRNA in suppression of ALDH+ cells. CONCLUSIONS: Our data suggest that Hsp27 regulates the EMT process and NF-κB activity to contribute the maintenance of BCSCs. Targeting Hsp27 may be considered as a novel strategy in breast cancer therapy.
format Online
Article
Text
id pubmed-3262214
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32622142012-01-20 Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB Wei, Li Liu, Tsung-Ta Wang, Hsiu-Huan Hong, Hui-Mei Yu, Alice L Feng, Hsiang-Pu Chang, Wen-Wei Breast Cancer Res Research Article INTRODUCTION: Heat shock proteins (HSPs) are normally induced under environmental stress to serve as chaperones for maintenance of correct protein folding but they are often overexpressed in many cancers, including breast cancer. The expression of Hsp27, an ATP-independent small HSP, is associated with cell migration and drug resistance of breast cancer cells. Breast cancer stem cells (BCSCs) have been identified as a subpopulation of breast cancer cells with markers of CD24-CD44+ or high intracellular aldehyde dehydrogenase activity (ALDH+) and proved to be associated with radiation resistance and metastasis. However, the involvement of Hsp27 in the maintenance of BCSC is largely unknown. METHODS: Mitogen-activated protein kinase antibody array and Western blot were used to discover the expression of Hsp27 and its phosphorylation in ALDH + BCSCs. To study the involvement of Hsp27 in BCSC biology, siRNA mediated gene silencing and quercetin treatment were used to inhibit Hsp27 expression and the characters of BCSCs, which include ALDH+ population, mammosphere formation and cell migration, were analyzed simultaneously. The tumorigenicity of breast cancer cells after knockdown of Hsp27 was analyzed by xenograftment assay in NOD/SCID mice. The epithelial-mesenchymal transition (EMT) of breast cancer cells was analyzed by wound-healing assay and Western blot of snail, vimentin and E-cadherin expression. The activation of nuclear factor kappa B (NF-κB) was analyzed by luciferase-based reporter assay and nuclear translocation. RESULTS: Hsp27 and its phosphorylation were increased in ALDH+ BCSCs in comparison with ALDH- non-BCSCs. Knockdown of Hsp27 in breast cancer cells decreased characters of BCSCs, such as ALDH+ population, mammosphere formation and cell migration. In addition, the in vivo CSC frequency could be diminished in Hsp27 knockdown breast cancer cells. The inhibitory effects could also be observed in cells treated with quercetin, a plant flavonoid inhibitor of Hsp27, and it could be reversed by overexpression of Hsp27. Knockdown of Hsp27 also suppressed EMT signatures, such as decreasing the expression of snail and vimentin and increasing the expression of E-cadherin. Furthermore, knockdown of Hsp27 decreased the nuclear translocation as well as the activity of NF-κB in ALDH + BCSCs, which resulted from increasing expression of IκBα. Restored activation of NF-κB by knockdown of IκBα could reverse the inhibitory effect of Hsp27 siRNA in suppression of ALDH+ cells. CONCLUSIONS: Our data suggest that Hsp27 regulates the EMT process and NF-κB activity to contribute the maintenance of BCSCs. Targeting Hsp27 may be considered as a novel strategy in breast cancer therapy. BioMed Central 2011 2011-10-24 /pmc/articles/PMC3262214/ /pubmed/22023707 http://dx.doi.org/10.1186/bcr3042 Text en Copyright ©2011 Wei et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wei, Li
Liu, Tsung-Ta
Wang, Hsiu-Huan
Hong, Hui-Mei
Yu, Alice L
Feng, Hsiang-Pu
Chang, Wen-Wei
Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title_full Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title_fullStr Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title_full_unstemmed Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title_short Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κB
title_sort hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-κb
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262214/
https://www.ncbi.nlm.nih.gov/pubmed/22023707
http://dx.doi.org/10.1186/bcr3042
work_keys_str_mv AT weili hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT liutsungta hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT wanghsiuhuan hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT honghuimei hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT yualicel hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT fenghsiangpu hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb
AT changwenwei hsp27participatesinthemaintenanceofbreastcancerstemcellsthroughregulationofepithelialmesenchymaltransitionandnuclearfactorkb