Cargando…

Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells

BACKGROUND: To investigate the expression of cyclin-dependent kinase 8 (CDK8) and β-catenin in colon cancer and evaluate the role of CDK8 in the proliferation, apoptosis and cell cycle progression of colon cancer cells, especially in HCT116 cell line. METHODS: Colon cancer cell line HCT116 was trans...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Song-Bing, Yuan, Yin, Wang, Lei, Yu, Min-Jing, Zhu, Yi-Bei, Zhu, Xing-Guo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271993/
https://www.ncbi.nlm.nih.gov/pubmed/22104393
http://dx.doi.org/10.1186/1756-9966-30-109
Descripción
Sumario:BACKGROUND: To investigate the expression of cyclin-dependent kinase 8 (CDK8) and β-catenin in colon cancer and evaluate the role of CDK8 in the proliferation, apoptosis and cell cycle progression of colon cancer cells, especially in HCT116 cell line. METHODS: Colon cancer cell line HCT116 was transfected with small interfering RNA (siRNA) targeting on CDK8. After CDK8-siRNA transfection, mRNA and protein expression levels of CDK8 and β-catenin were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot assay in HCT116 cells. Cell proliferation was measured by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide Methylthiazolyl tetrazolium (MTT) assay, and cell cycle distribution and apoptosis were analyzed by flow cytometry analysis (FACS). CDK8 and β-catenin protein levels were also examined by real-time PCR and immunohistochemistry (IHC) in colon cancer tissues and adjacent normal tissues. RESULTS: After CDK8 specific siRNA transfection, mRNA and protein expression levels of CDK8 and β-catenin in HCT116 cells were noticeably decreased (P < 0.05). CDK8 specific siRNA transfection inhibited HCT116 cells' proliferation and facilitated their apoptosis significantly (P < 0.05). In addition, the proportion of HCT116 cells in the G0/G1 phase was remarkably increased after CDK8-siRNA transfection (P < 0.05). The expression levels of CDK8 and β-catenin in adjacent normal tissues were lower than in tumor tissues (P < 0.05). Moreover, the expression of CDK8 was correlated with the expression of β-catenin in both tumor and adjacent normal tissues (P < 0.05). CONCLUSIONS: CDK8 and β-catenin were expressed in colon cancer at a high frequency. CDK8 specific siRNA transfection down-regulated the expression of CDK8 in colon cancer cells, which was also associated with a decrease in the expression of β-catenin Moreover, CDK8 specific siRNA inhibited the proliferation of colon cancer cells, promoted their apoptosis and arrested these cells in the G0/G1 phase. Interference of CDK8 might be an effective strategy through β-catenin regulation of colon cancer.