Cargando…
Highly Parallel Genome-Wide Expression Analysis of Single Mammalian Cells
BACKGROUND: We have developed a high-throughput amplification method for generating robust gene expression profiles using single cell or low RNA inputs. METHODOLOGY/PRINCIPAL FINDINGS: The method uses tagged priming and template-switching, resulting in the incorporation of universal PCR priming site...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275609/ https://www.ncbi.nlm.nih.gov/pubmed/22347404 http://dx.doi.org/10.1371/journal.pone.0030794 |
Sumario: | BACKGROUND: We have developed a high-throughput amplification method for generating robust gene expression profiles using single cell or low RNA inputs. METHODOLOGY/PRINCIPAL FINDINGS: The method uses tagged priming and template-switching, resulting in the incorporation of universal PCR priming sites at both ends of the synthesized cDNA for global PCR amplification. Coupled with a whole-genome gene expression microarray platform, we routinely obtain expression correlation values of R(2)∼0.76–0.80 between individual cells and R(2)∼0.69 between 50 pg total RNA replicates. Expression profiles generated from single cells or 50 pg total RNA correlate well with that generated with higher input (1 ng total RNA) (R(2)∼0.80). Also, the assay is sufficiently sensitive to detect, in a single cell, approximately 63% of the number of genes detected with 1 ng input, with approximately 97% of the genes detected in the single-cell input also detected in the higher input. CONCLUSIONS/SIGNIFICANCE: In summary, our method facilitates whole-genome gene expression profiling in contexts where starting material is extremely limiting, particularly in areas such as the study of progenitor cells in early development and tumor stem cell biology. |
---|