Cargando…
Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has be...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278449/ https://www.ncbi.nlm.nih.gov/pubmed/22348084 http://dx.doi.org/10.1371/journal.pone.0031424 |
_version_ | 1782223575584866304 |
---|---|
author | Caesar, Ina Jonson, Maria Nilsson, K. Peter R. Thor, Stefan Hammarström, Per |
author_facet | Caesar, Ina Jonson, Maria Nilsson, K. Peter R. Thor, Stefan Hammarström, Per |
author_sort | Caesar, Ina |
collection | PubMed |
description | The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ(1–42) in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ(1–42). Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila. |
format | Online Article Text |
id | pubmed-3278449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32784492012-02-17 Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila Caesar, Ina Jonson, Maria Nilsson, K. Peter R. Thor, Stefan Hammarström, Per PLoS One Research Article The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ(1–42) in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ(1–42). Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila. Public Library of Science 2012-02-13 /pmc/articles/PMC3278449/ /pubmed/22348084 http://dx.doi.org/10.1371/journal.pone.0031424 Text en Caesar et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Caesar, Ina Jonson, Maria Nilsson, K. Peter R. Thor, Stefan Hammarström, Per Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila |
title | Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
|
title_full | Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
|
title_fullStr | Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
|
title_full_unstemmed | Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
|
title_short | Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
|
title_sort | curcumin promotes a-beta fibrillation and reduces neurotoxicity in transgenic drosophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278449/ https://www.ncbi.nlm.nih.gov/pubmed/22348084 http://dx.doi.org/10.1371/journal.pone.0031424 |
work_keys_str_mv | AT caesarina curcuminpromotesabetafibrillationandreducesneurotoxicityintransgenicdrosophila AT jonsonmaria curcuminpromotesabetafibrillationandreducesneurotoxicityintransgenicdrosophila AT nilssonkpeterr curcuminpromotesabetafibrillationandreducesneurotoxicityintransgenicdrosophila AT thorstefan curcuminpromotesabetafibrillationandreducesneurotoxicityintransgenicdrosophila AT hammarstromper curcuminpromotesabetafibrillationandreducesneurotoxicityintransgenicdrosophila |