Cargando…

Angiotensin I–Converting Enzyme Type 2 (ACE2) Gene Therapy Improves Glycemic Control in Diabetic Mice

OBJECTIVE: Several clinical studies have shown the benefits of renin-angiotensin system (RAS) blockade in the development of diabetes, and a local RAS has been identified in pancreatic islets. Angiotensin I–converting enzyme (ACE)2, a new component of the RAS, has been identified in the pancreas, bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bindom, Sharell M., Hans, Chetan P., Xia, Huijing, Boulares, A. Hamid, Lazartigues, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279528/
https://www.ncbi.nlm.nih.gov/pubmed/20660625
http://dx.doi.org/10.2337/db09-0782
Descripción
Sumario:OBJECTIVE: Several clinical studies have shown the benefits of renin-angiotensin system (RAS) blockade in the development of diabetes, and a local RAS has been identified in pancreatic islets. Angiotensin I–converting enzyme (ACE)2, a new component of the RAS, has been identified in the pancreas, but its role in β-cell function remains unknown. Using 8- and 16-week-old obese db/db mice, we examined the ability of ACE2 to alter pancreatic β-cell function and thereby modulate hyperglycemia. RESEARCH DESIGN AND METHODS: Both db/db and nondiabetic lean control (db/m) mice were infected with an adenovirus expressing human ACE2 (Ad-hACE2-eGFP) or the control virus (Ad-eGFP) via injection into the pancreas. Glycemia and β-cell function were assessed 1 week later at the peak of viral expression. RESULTS: In 8-week-old db/db mice, Ad-hACE2-eGFP significantly improved fasting glycemia, enhanced intraperitoneal glucose tolerance, increased islet insulin content and β-cell proliferation, and reduced β-cell apoptosis compared with Ad-eGFP. ACE2 overexpression had no effect on insulin sensitivity in comparison with Ad-eGFP treatment in diabetic mice. Angiotensin-(1–7) receptor blockade by d-Ala(7)–Ang-(1-7) prevented the ACE2-mediated improvements in intraperitoneal glucose tolerance, glycemia, and islet function and also impaired insulin sensitivity in both Ad-hACE2-eGFP– and Ad-eGFP–treated db/db mice. d-Ala(7)–Ang-(1-7) had no effect on db/m mice. In 16-week-old diabetic mice, Ad-hACE2-eGFP treatment improved fasting blood glucose but had no effect on any of the other parameters. CONCLUSIONS: These findings identify ACE2 as a novel target for the prevention of β-cell dysfunction and apoptosis occurring in type 2 diabetes.