Cargando…

RET PLCγ Phosphotyrosine Binding Domain Regulates Ca(2+) Signaling and Neocortical Neuronal Migration

The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate vari...

Descripción completa

Detalles Bibliográficos
Autores principales: Lundgren, T. Kalle, Nakahata, Katsutoshi, Fritz, Nicolas, Rebellato, Paola, Zhang, Songbai, Uhlén, Per
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280273/
https://www.ncbi.nlm.nih.gov/pubmed/22355350
http://dx.doi.org/10.1371/journal.pone.0031258
Descripción
Sumario:The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca(2+)) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca(2+) from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca(2+) and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015.