Cargando…
Reduced Retinal Function in the Absence of Na(v)1.6
BACKGROUND: Mice with a function-blocking mutation in the Scn8a gene that encodes Na(v)1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280295/ https://www.ncbi.nlm.nih.gov/pubmed/22355369 http://dx.doi.org/10.1371/journal.pone.0031476 |
_version_ | 1782223810701819904 |
---|---|
author | Smith, Benjamin J. Côté, Patrice D. |
author_facet | Smith, Benjamin J. Côté, Patrice D. |
author_sort | Smith, Benjamin J. |
collection | PubMed |
description | BACKGROUND: Mice with a function-blocking mutation in the Scn8a gene that encodes Na(v)1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the retinal function of these mice in light adapted conditions has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: In the present report we reveal that during light adaptation these animals are shown to have electroretinograms with significant decreases in the amplitude of the a- and b-waves. The percent decrease in the a- and b-waves substantially exceeds the acute effect of VGSC block by tetrodotoxin in control littermates. Intravitreal injection of CoCl(2) or CNQX to isolate the a-wave contributions of the photoreceptors in littermates revealed that at high background luminance the cone-isolated component of the a-wave is of the same amplitude as the a-wave of mutants. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Scn8a mutant mice have reduced function in both rod and the cone retinal pathways. The extent of the reduction in the cone pathway, as quantified using the ERG b-wave, exceeds the reduction seen in control littermates after application of TTX, suggesting that a defect in cone photoreceptors contributes to the reduction. Unless the postreceptoral component of the a-wave is increased in Scn8a mutant mice, the reduction in the b-wave is larger than can be accounted for by reduced photoreceptor function alone. Our data suggests that the reduction in the light adapted ERG of Scn8a mutant mice is caused by a combination of reduced cone photoreceptor function and reduced depolarization of cone ON bipolar cells. This raises the possibility that Na(v)1.6 augments signaling in cone bipolar cells. |
format | Online Article Text |
id | pubmed-3280295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32802952012-02-21 Reduced Retinal Function in the Absence of Na(v)1.6 Smith, Benjamin J. Côté, Patrice D. PLoS One Research Article BACKGROUND: Mice with a function-blocking mutation in the Scn8a gene that encodes Na(v)1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the retinal function of these mice in light adapted conditions has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: In the present report we reveal that during light adaptation these animals are shown to have electroretinograms with significant decreases in the amplitude of the a- and b-waves. The percent decrease in the a- and b-waves substantially exceeds the acute effect of VGSC block by tetrodotoxin in control littermates. Intravitreal injection of CoCl(2) or CNQX to isolate the a-wave contributions of the photoreceptors in littermates revealed that at high background luminance the cone-isolated component of the a-wave is of the same amplitude as the a-wave of mutants. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Scn8a mutant mice have reduced function in both rod and the cone retinal pathways. The extent of the reduction in the cone pathway, as quantified using the ERG b-wave, exceeds the reduction seen in control littermates after application of TTX, suggesting that a defect in cone photoreceptors contributes to the reduction. Unless the postreceptoral component of the a-wave is increased in Scn8a mutant mice, the reduction in the b-wave is larger than can be accounted for by reduced photoreceptor function alone. Our data suggests that the reduction in the light adapted ERG of Scn8a mutant mice is caused by a combination of reduced cone photoreceptor function and reduced depolarization of cone ON bipolar cells. This raises the possibility that Na(v)1.6 augments signaling in cone bipolar cells. Public Library of Science 2012-02-15 /pmc/articles/PMC3280295/ /pubmed/22355369 http://dx.doi.org/10.1371/journal.pone.0031476 Text en Smith, Côté. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Smith, Benjamin J. Côté, Patrice D. Reduced Retinal Function in the Absence of Na(v)1.6 |
title | Reduced Retinal Function in the Absence of Na(v)1.6 |
title_full | Reduced Retinal Function in the Absence of Na(v)1.6 |
title_fullStr | Reduced Retinal Function in the Absence of Na(v)1.6 |
title_full_unstemmed | Reduced Retinal Function in the Absence of Na(v)1.6 |
title_short | Reduced Retinal Function in the Absence of Na(v)1.6 |
title_sort | reduced retinal function in the absence of na(v)1.6 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280295/ https://www.ncbi.nlm.nih.gov/pubmed/22355369 http://dx.doi.org/10.1371/journal.pone.0031476 |
work_keys_str_mv | AT smithbenjaminj reducedretinalfunctionintheabsenceofnav16 AT cotepatriced reducedretinalfunctionintheabsenceofnav16 |