Cargando…
Principal components ancestry adjustment for Genetic Analysis Workshop 17 data
Statistical tests on rare variant data may well have type I error rates that differ from their nominal levels. Here, we use the Genetic Analysis Workshop 17 data to estimate type I error rates and powers of three models for identifying rare variants associated with a phenotype: (1) by using the numb...
Autores principales: | Jin, Jing, Cerise, Jane E, Kang, Sun Jung, Yoon, Eun Jung, Yoon, Seungtai, Mendell, Nancy R, Finch, Stephen J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287905/ https://www.ncbi.nlm.nih.gov/pubmed/22373457 http://dx.doi.org/10.1186/1753-6561-5-S9-S66 |
Ejemplares similares
-
A Bayesian approach for applying Haseman-Elston methods
por: Yoon, Seungtai, et al.
Publicado: (2005) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007) -
Exploring pleiotropy using principal components
por: Bensen, Jeannette T, et al.
Publicado: (2003) -
Association tests based on the principal-component analysis
por: Oh, Sohee, et al.
Publicado: (2007) -
Genetic Analysis Workshop 17 mini-exome simulation
por: Almasy, Laura, et al.
Publicado: (2011)