Cargando…
Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees
Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use of linkage information in large families should provide a great opportunity to identify less frequent variants. We perform a linkage scan for both dichotomous and quantitative traits i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287907/ https://www.ncbi.nlm.nih.gov/pubmed/22373516 http://dx.doi.org/10.1186/1753-6561-5-S9-S68 |
_version_ | 1782224770733965312 |
---|---|
author | Chen, Wei-Min Manichaikul, Ani Rich, Stephen S |
author_facet | Chen, Wei-Min Manichaikul, Ani Rich, Stephen S |
author_sort | Chen, Wei-Min |
collection | PubMed |
description | Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use of linkage information in large families should provide a great opportunity to identify less frequent variants. We perform a linkage scan for both dichotomous and quantitative traits in eight extended families. For the dichotomous trait, we identified one linkage region on chromosome 4q. For quantitative traits, we identified two regions on chromosomes 4q and 6p for Q1 and one region on chromosome 6q for Q2. To identify variants that contribute to these linkage signals, we performed standard association analysis in genomic regions of interest. We also screened less frequent variants in the linkage region based on the risk ratio and phenotypic distribution among carriers. Two rare variants at VEGFC and one common variant on chromosome 4q conferred the greatest risk for the dichotomous trait. We identified two rare variants on chromosomes 4q (VEGFC) and 6p (VEGFA) that explain 12.4% of the total phenotypic variance of trait Q1. We also identified four variants (including one at VNN3) on chromosome 6q that are able to drop the linkage LOD from 3.7 to 1.0. These results suggest that the use of classical linkage and association methods in large families can provide a useful approach to identifying variants that are responsible for diseases and complex traits in families. |
format | Online Article Text |
id | pubmed-3287907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32879072012-02-28 Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees Chen, Wei-Min Manichaikul, Ani Rich, Stephen S BMC Proc Proceedings Compared to genome-wide association analysis, linkage analysis is less influenced by allelic heterogeneity. The use of linkage information in large families should provide a great opportunity to identify less frequent variants. We perform a linkage scan for both dichotomous and quantitative traits in eight extended families. For the dichotomous trait, we identified one linkage region on chromosome 4q. For quantitative traits, we identified two regions on chromosomes 4q and 6p for Q1 and one region on chromosome 6q for Q2. To identify variants that contribute to these linkage signals, we performed standard association analysis in genomic regions of interest. We also screened less frequent variants in the linkage region based on the risk ratio and phenotypic distribution among carriers. Two rare variants at VEGFC and one common variant on chromosome 4q conferred the greatest risk for the dichotomous trait. We identified two rare variants on chromosomes 4q (VEGFC) and 6p (VEGFA) that explain 12.4% of the total phenotypic variance of trait Q1. We also identified four variants (including one at VNN3) on chromosome 6q that are able to drop the linkage LOD from 3.7 to 1.0. These results suggest that the use of classical linkage and association methods in large families can provide a useful approach to identifying variants that are responsible for diseases and complex traits in families. BioMed Central 2011-11-29 /pmc/articles/PMC3287907/ /pubmed/22373516 http://dx.doi.org/10.1186/1753-6561-5-S9-S68 Text en Copyright ©2011 Chen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Chen, Wei-Min Manichaikul, Ani Rich, Stephen S Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title | Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title_full | Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title_fullStr | Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title_full_unstemmed | Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title_short | Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
title_sort | identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287907/ https://www.ncbi.nlm.nih.gov/pubmed/22373516 http://dx.doi.org/10.1186/1753-6561-5-S9-S68 |
work_keys_str_mv | AT chenweimin identifyingvariantsthatcontributetolinkagefordichotomousandquantitativetraitsinextendedpedigrees AT manichaikulani identifyingvariantsthatcontributetolinkagefordichotomousandquantitativetraitsinextendedpedigrees AT richstephens identifyingvariantsthatcontributetolinkagefordichotomousandquantitativetraitsinextendedpedigrees |