Cargando…

Using linkage analysis of large pedigrees to guide association analyses

To date, genome-wide association studies have yielded discoveries of common variants that partly explain familial aggregation of diseases and traits. Researchers are now turning their attention to less common variants because the price of sequencing has dropped drastically. However, because sequenci...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Seung-Hoan, Liu, Chunyu, Dupuis, Josée, Logue, Mark W, Jun, Gyungah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287919/
https://www.ncbi.nlm.nih.gov/pubmed/22373287
http://dx.doi.org/10.1186/1753-6561-5-S9-S79
Descripción
Sumario:To date, genome-wide association studies have yielded discoveries of common variants that partly explain familial aggregation of diseases and traits. Researchers are now turning their attention to less common variants because the price of sequencing has dropped drastically. However, because sequencing of the whole genome in large samples is costly, great care must be taken to prioritize which samples and which genomic regions are selected for sequencing. We are interested in identifying genomic regions for deep sequencing using large multiplex families collected as part of earlier linkage studies. We incorporate linkage analysis into our search for Q1-associated alleles. Overall, we found that power was low for both whole-exome and linkage-guided sequencing analysis. By restricting sequencing to regions with high LOD peaks, we found fewer associated single-nucleotide polymorphisms than by using whole-exome sequencing. However, incorporating linkage analysis enabled us to detect more than half of the associated susceptibility loci (52%) that would have been identified by whole-exome sequencing while examining only 2.5% of the exome. This result suggests that incorporating linkage results from large multiplex families might greatly increase the efficiency of sequencing to detect trait-associated alleles in complex disease.