Cargando…

Occludin is required for apoptosis when claudin–claudin interactions are disrupted

Disruption of tight junctions is often seen during pathogen infection, inflammation, and tumor progression. Mislocalization of the tight junction proteins occludin and claudin in mammary epithelial monolayers leads to apoptosis through the extrinsic pathway. To further investigate the mechanism of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Beeman, N, Webb, P G, Baumgartner, H K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288343/
https://www.ncbi.nlm.nih.gov/pubmed/22361748
http://dx.doi.org/10.1038/cddis.2012.14
Descripción
Sumario:Disruption of tight junctions is often seen during pathogen infection, inflammation, and tumor progression. Mislocalization of the tight junction proteins occludin and claudin in mammary epithelial monolayers leads to apoptosis through the extrinsic pathway. To further investigate the mechanism of this response, a normal mammary epithelial cell line (EpH4) as well as primary mammary epithelial cells were treated with a claudin-disrupting mimic peptide, DFYNP (aspartic acid–phenylalanine–tyrosine–asparagine–proline). Using fluorescent indicators, we found that caspase-3 activation, resulting from treatment with DFYNP, was restricted to EpH4 and primary mammary epithelial cells with mislocalized claudin-4. Mislocalized claudin-4 and occludin were colocalized in non-junctional puncta, and both molecules were found in the death-inducing signaling complex (DISC) where they colocalized with Fas, fas-associated protein with death domain (FADD), active caspase-8 and caspase-3 at distinct apical domains. Importantly, caspase-3 activation was totally repressed in primary mammary epithelial cells from occludin null mice. Thus, the apoptotic response appears to be initiated by the movement of occludin to the DISC suggesting that this molecule has signaling properties that initiate cell death when its tight junction location is disrupted.