Cargando…

Cyclooxygenase-1-Selective Inhibitors Based on the (E)-2′-Des-methyl-sulindac Sulfide Scaffold

[Image: see text] Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG b...

Descripción completa

Detalles Bibliográficos
Autores principales: Liedtke, Andy J., Crews, Brenda C., Daniel, Cristina M., Blobaum, Anna L., Kingsley, Philip J., Ghebreselasie, Kebreab, Marnett, Lawrence J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2012
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297362/
https://www.ncbi.nlm.nih.gov/pubmed/22263894
http://dx.doi.org/10.1021/jm201528b
Descripción
Sumario:[Image: see text] Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG biosynthesis is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). Specific inhibition of COX-2 has been extensively investigated, but relatively few COX-1-selective inhibitors have been described. Recent reports of a possible contribution of COX-1 in analgesia, neuroinflammation, or carcinogenesis suggest that COX-1 is a potential therapeutic target. We designed, synthesized, and evaluated a series of (E)-2′-des-methyl-sulindac sulfide (E-DMSS) analogues for inhibition of COX-1. Several potent and selective inhibitors were discovered, and the most promising compounds were active against COX-1 in intact ovarian carcinoma cells (OVCAR-3). The compounds inhibited tumor cell proliferation but only at concentrations >100-fold higher than the concentrations that inhibit COX-1 activity. E-DMSS analogues may be useful probes of COX-1 biology in vivo and promising leads for COX-1-targeted therapeutic agents.