Cargando…
Removing technical variability in RNA-seq data using conditional quantile normalization
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a...
Autores principales: | Hansen, Kasper D., Irizarry, Rafael A., WU, Zhijin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297825/ https://www.ncbi.nlm.nih.gov/pubmed/22285995 http://dx.doi.org/10.1093/biostatistics/kxr054 |
Ejemplares similares
-
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
Sequencing technology does not eliminate biological variability
por: Hansen, Kasper D., et al.
Publicado: (2011) -
Differential expression analysis of RNA-seq data at single-base resolution
por: Frazee, Alyssa C., et al.
Publicado: (2014) -
Corrigendum: Differential expression analysis of RNA-seq data at single-base resolution
por: Frazee, Alyssa C., et al.
Publicado: (2014) -
Batch effects removal for microbiome data via conditional quantile regression
por: Ling, Wodan, et al.
Publicado: (2022)