Cargando…

Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure

Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role...

Descripción completa

Detalles Bibliográficos
Autores principales: Trenor, Beatriz, Cardona, Karen, Gomez, Juan F., Rajamani, Sridharan, Ferrero, Jose M., Belardinelli, Luiz, Saiz, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299678/
https://www.ncbi.nlm.nih.gov/pubmed/22427860
http://dx.doi.org/10.1371/journal.pone.0032659
_version_ 1782226147259449344
author Trenor, Beatriz
Cardona, Karen
Gomez, Juan F.
Rajamani, Sridharan
Ferrero, Jose M.
Belardinelli, Luiz
Saiz, Javier
author_facet Trenor, Beatriz
Cardona, Karen
Gomez, Juan F.
Rajamani, Sridharan
Ferrero, Jose M.
Belardinelli, Luiz
Saiz, Javier
author_sort Trenor, Beatriz
collection PubMed
description Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role of I(NaL) in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of I(NaL). A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I(NaL) and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I(NaL) in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca(2+) transient. A mechanistic investigation of intracellular Na(+) accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na(+)/K(+) pump, the Na(+)/Ca(2+) exchanger and I(NaL). The results of the simulations also showed that in failing myocytes, the enhancement of I(NaL) increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I(NaL) prolong APD and alter Ca(2+) transient facilitating the development of early afterdepolarizations. An enhanced I(NaL) appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca(2+)](i) homeostasis of failing myocytes.
format Online
Article
Text
id pubmed-3299678
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32996782012-03-16 Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure Trenor, Beatriz Cardona, Karen Gomez, Juan F. Rajamani, Sridharan Ferrero, Jose M. Belardinelli, Luiz Saiz, Javier PLoS One Research Article Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role of I(NaL) in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of I(NaL). A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I(NaL) and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I(NaL) in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca(2+) transient. A mechanistic investigation of intracellular Na(+) accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na(+)/K(+) pump, the Na(+)/Ca(2+) exchanger and I(NaL). The results of the simulations also showed that in failing myocytes, the enhancement of I(NaL) increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I(NaL) prolong APD and alter Ca(2+) transient facilitating the development of early afterdepolarizations. An enhanced I(NaL) appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca(2+)](i) homeostasis of failing myocytes. Public Library of Science 2012-03-12 /pmc/articles/PMC3299678/ /pubmed/22427860 http://dx.doi.org/10.1371/journal.pone.0032659 Text en Trenor et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Trenor, Beatriz
Cardona, Karen
Gomez, Juan F.
Rajamani, Sridharan
Ferrero, Jose M.
Belardinelli, Luiz
Saiz, Javier
Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title_full Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title_fullStr Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title_full_unstemmed Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title_short Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
title_sort simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299678/
https://www.ncbi.nlm.nih.gov/pubmed/22427860
http://dx.doi.org/10.1371/journal.pone.0032659
work_keys_str_mv AT trenorbeatriz simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT cardonakaren simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT gomezjuanf simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT rajamanisridharan simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT ferrerojosem simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT belardinelliluiz simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure
AT saizjavier simulationandmechanisticinvestigationofthearrhythmogenicroleofthelatesodiumcurrentinhumanheartfailure