Cargando…
Vector Disparity Sensor with Vergence Control for Active Vision Systems
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation wit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304139/ https://www.ncbi.nlm.nih.gov/pubmed/22438737 http://dx.doi.org/10.3390/s120201771 |
_version_ | 1782226840320999424 |
---|---|
author | Barranco, Francisco Diaz, Javier Gibaldi, Agostino Sabatini, Silvio P. Ros, Eduardo |
author_facet | Barranco, Francisco Diaz, Javier Gibaldi, Agostino Sabatini, Silvio P. Ros, Eduardo |
author_sort | Barranco, Francisco |
collection | PubMed |
description | This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. |
format | Online Article Text |
id | pubmed-3304139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33041392012-03-21 Vector Disparity Sensor with Vergence Control for Active Vision Systems Barranco, Francisco Diaz, Javier Gibaldi, Agostino Sabatini, Silvio P. Ros, Eduardo Sensors (Basel) Article This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. Molecular Diversity Preservation International (MDPI) 2012-02-09 /pmc/articles/PMC3304139/ /pubmed/22438737 http://dx.doi.org/10.3390/s120201771 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Barranco, Francisco Diaz, Javier Gibaldi, Agostino Sabatini, Silvio P. Ros, Eduardo Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title | Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title_full | Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title_fullStr | Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title_full_unstemmed | Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title_short | Vector Disparity Sensor with Vergence Control for Active Vision Systems |
title_sort | vector disparity sensor with vergence control for active vision systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304139/ https://www.ncbi.nlm.nih.gov/pubmed/22438737 http://dx.doi.org/10.3390/s120201771 |
work_keys_str_mv | AT barrancofrancisco vectordisparitysensorwithvergencecontrolforactivevisionsystems AT diazjavier vectordisparitysensorwithvergencecontrolforactivevisionsystems AT gibaldiagostino vectordisparitysensorwithvergencecontrolforactivevisionsystems AT sabatinisilviop vectordisparitysensorwithvergencecontrolforactivevisionsystems AT roseduardo vectordisparitysensorwithvergencecontrolforactivevisionsystems |