Cargando…
Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells
BACKGROUND AND THE PURPOSE OF THE STUDY: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress si...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304374/ https://www.ncbi.nlm.nih.gov/pubmed/22615609 |
_version_ | 1782226889400647680 |
---|---|
author | Jamshidiha, M. Habibollahi, P. Ostad, S.N. Ghahremani, M.H. |
author_facet | Jamshidiha, M. Habibollahi, P. Ostad, S.N. Ghahremani, M.H. |
author_sort | Jamshidiha, M. |
collection | PubMed |
description | BACKGROUND AND THE PURPOSE OF THE STUDY: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. MATERIALS AND METHODS: HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. RESULTS: Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. CONCLUSION: Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway. |
format | Online Article Text |
id | pubmed-3304374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Tehran University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-33043742012-05-21 Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells Jamshidiha, M. Habibollahi, P. Ostad, S.N. Ghahremani, M.H. Daru Original Article BACKGROUND AND THE PURPOSE OF THE STUDY: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. MATERIALS AND METHODS: HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. RESULTS: Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. CONCLUSION: Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway. Tehran University of Medical Sciences 2010 /pmc/articles/PMC3304374/ /pubmed/22615609 Text en © 2010 Tehran University of Medical Sciences http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly. |
spellingShingle | Original Article Jamshidiha, M. Habibollahi, P. Ostad, S.N. Ghahremani, M.H. Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title | Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title_full | Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title_fullStr | Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title_full_unstemmed | Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title_short | Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells |
title_sort | primary wwox phosphorylation and jnk activation during etoposide induces cytotoxicity in hek293 cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304374/ https://www.ncbi.nlm.nih.gov/pubmed/22615609 |
work_keys_str_mv | AT jamshidiham primarywwoxphosphorylationandjnkactivationduringetoposideinducescytotoxicityinhek293cells AT habibollahip primarywwoxphosphorylationandjnkactivationduringetoposideinducescytotoxicityinhek293cells AT ostadsn primarywwoxphosphorylationandjnkactivationduringetoposideinducescytotoxicityinhek293cells AT ghahremanimh primarywwoxphosphorylationandjnkactivationduringetoposideinducescytotoxicityinhek293cells |