Cargando…
Influence of wet distillers grains diets on beef cattle fecal bacterial community structure
BACKGROUND: The high demand for ethanol in the U.S. has generated large stocks of wet distillers grains (DG), a byproduct from the manufacture of ethanol from corn and sorghum grains. Little is known, however, about the potential influence of dietary DG on fecal microbial community structure. A bett...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305651/ https://www.ncbi.nlm.nih.gov/pubmed/22364310 http://dx.doi.org/10.1186/1471-2180-12-25 |
_version_ | 1782227117234192384 |
---|---|
author | Rice, William C Galyean, Michael L Cox, Stephen B Dowd, Scot E Cole, N Andy |
author_facet | Rice, William C Galyean, Michael L Cox, Stephen B Dowd, Scot E Cole, N Andy |
author_sort | Rice, William C |
collection | PubMed |
description | BACKGROUND: The high demand for ethanol in the U.S. has generated large stocks of wet distillers grains (DG), a byproduct from the manufacture of ethanol from corn and sorghum grains. Little is known, however, about the potential influence of dietary DG on fecal microbial community structure. A better understanding of the microbial population in beef cattle feces could be an important monitoring tool to facilitate goals of improving nutrient management, increasing animal growth performance and decreasing odors and/or shedding of pathogens. Five diets consisting of a traditional diet fed to finishing beef cattle in the Southern High Plains of Texas-CON (steam-flaked corn control with 0% DG), and four concentrations of DG in the dietary dry matter; 10 C (10% corn-based DG), 5S (5% sorghum-based DG), 10S (10% sorghum DG), and 15S (15% sorghum DG) were fed to steers at the Texas Tech University Burnett Animal Center. Diets were essentially isonitrogenous with a formulated crude protein value of 13.5%. RESULTS: Fecal grab samples were obtained from 20 steers (n = 4 per diet) and the barcoded DNA pyrosequencing method was used to generate 127,530 16S operational taxonomic units (OTUs). A total of 24 phyla were observed, distributed amongst all beef cattle on all diets, revealing considerable animal to animal variation, however only six phyla (core set) were observed in all animals regardless of dietary treatment. The average abundance and range of abundance, respectively of the core phyla were as follows: Firmicutes (61%, 19 to 83%), Bacteroidetes (28%, 11 to 63%), Proteobacteria (3%, 0.34 to 17.5%), Tenericutes (0.15%, 0.0 to 0.35%), Nitrospirae (0.11%, 0.03 to 0.22%), and Fusobacteria (0.086%, 0.017 to 0.38%). Feeding DG-based diets resulted in significant shifts in the fecal microbial community structure compared with the traditional CON. Four low abundance phyla significantly responded to dietary treatments: Synergistetes (p = 0.01), WS3 (p = 0.054), Actinobacteria (p = 0.06), and Spirochaetes (p = 0.06). CONCLUSIONS: This is, to our knowledge, the first study using this method to survey the fecal microbiome of beef cattle fed various concentrations of wet DG. Comparison of our results with other cattle DNA sequencing studies of beef and dairy cattle feces from a variety of geographical locations and different management practices identifies a core set of three phyla shared across all cattle. These three phyla, in order of relative abundance are; Firmicutes, Bacteroidetes, and Proteobacteria. The presence of large animal-to-animal variation in cattle microbiome was noted in our study as well as by others. |
format | Online Article Text |
id | pubmed-3305651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33056512012-03-16 Influence of wet distillers grains diets on beef cattle fecal bacterial community structure Rice, William C Galyean, Michael L Cox, Stephen B Dowd, Scot E Cole, N Andy BMC Microbiol Research Article BACKGROUND: The high demand for ethanol in the U.S. has generated large stocks of wet distillers grains (DG), a byproduct from the manufacture of ethanol from corn and sorghum grains. Little is known, however, about the potential influence of dietary DG on fecal microbial community structure. A better understanding of the microbial population in beef cattle feces could be an important monitoring tool to facilitate goals of improving nutrient management, increasing animal growth performance and decreasing odors and/or shedding of pathogens. Five diets consisting of a traditional diet fed to finishing beef cattle in the Southern High Plains of Texas-CON (steam-flaked corn control with 0% DG), and four concentrations of DG in the dietary dry matter; 10 C (10% corn-based DG), 5S (5% sorghum-based DG), 10S (10% sorghum DG), and 15S (15% sorghum DG) were fed to steers at the Texas Tech University Burnett Animal Center. Diets were essentially isonitrogenous with a formulated crude protein value of 13.5%. RESULTS: Fecal grab samples were obtained from 20 steers (n = 4 per diet) and the barcoded DNA pyrosequencing method was used to generate 127,530 16S operational taxonomic units (OTUs). A total of 24 phyla were observed, distributed amongst all beef cattle on all diets, revealing considerable animal to animal variation, however only six phyla (core set) were observed in all animals regardless of dietary treatment. The average abundance and range of abundance, respectively of the core phyla were as follows: Firmicutes (61%, 19 to 83%), Bacteroidetes (28%, 11 to 63%), Proteobacteria (3%, 0.34 to 17.5%), Tenericutes (0.15%, 0.0 to 0.35%), Nitrospirae (0.11%, 0.03 to 0.22%), and Fusobacteria (0.086%, 0.017 to 0.38%). Feeding DG-based diets resulted in significant shifts in the fecal microbial community structure compared with the traditional CON. Four low abundance phyla significantly responded to dietary treatments: Synergistetes (p = 0.01), WS3 (p = 0.054), Actinobacteria (p = 0.06), and Spirochaetes (p = 0.06). CONCLUSIONS: This is, to our knowledge, the first study using this method to survey the fecal microbiome of beef cattle fed various concentrations of wet DG. Comparison of our results with other cattle DNA sequencing studies of beef and dairy cattle feces from a variety of geographical locations and different management practices identifies a core set of three phyla shared across all cattle. These three phyla, in order of relative abundance are; Firmicutes, Bacteroidetes, and Proteobacteria. The presence of large animal-to-animal variation in cattle microbiome was noted in our study as well as by others. BioMed Central 2012-02-24 /pmc/articles/PMC3305651/ /pubmed/22364310 http://dx.doi.org/10.1186/1471-2180-12-25 Text en Copyright ©2012 Rice et al; BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rice, William C Galyean, Michael L Cox, Stephen B Dowd, Scot E Cole, N Andy Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title | Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title_full | Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title_fullStr | Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title_full_unstemmed | Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title_short | Influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
title_sort | influence of wet distillers grains diets on beef cattle fecal bacterial community structure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305651/ https://www.ncbi.nlm.nih.gov/pubmed/22364310 http://dx.doi.org/10.1186/1471-2180-12-25 |
work_keys_str_mv | AT ricewilliamc influenceofwetdistillersgrainsdietsonbeefcattlefecalbacterialcommunitystructure AT galyeanmichaell influenceofwetdistillersgrainsdietsonbeefcattlefecalbacterialcommunitystructure AT coxstephenb influenceofwetdistillersgrainsdietsonbeefcattlefecalbacterialcommunitystructure AT dowdscote influenceofwetdistillersgrainsdietsonbeefcattlefecalbacterialcommunitystructure AT colenandy influenceofwetdistillersgrainsdietsonbeefcattlefecalbacterialcommunitystructure |