Cargando…
A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter
BACKGROUND: The human papillomavirus (HPV) E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vul...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307029/ https://www.ncbi.nlm.nih.gov/pubmed/22333459 http://dx.doi.org/10.1186/1471-2199-13-5 |
_version_ | 1782227278324826112 |
---|---|
author | Gao, Chen Pan, Ming-Ming Lei, Yan-Jun Tian, Li-Qing Jiang, Hui-Ying Li, Xiao-Li Shi, Qi Tian, Chan Yuan, Yu-Kang Fan, Gui-Xiang Dong, Xiao-Ping |
author_facet | Gao, Chen Pan, Ming-Ming Lei, Yan-Jun Tian, Li-Qing Jiang, Hui-Ying Li, Xiao-Li Shi, Qi Tian, Chan Yuan, Yu-Kang Fan, Gui-Xiang Dong, Xiao-Ping |
author_sort | Gao, Chen |
collection | PubMed |
description | BACKGROUND: The human papillomavirus (HPV) E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa) substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. RESULTS: CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA) showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. CONCLUSIONS: These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation. |
format | Online Article Text |
id | pubmed-3307029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33070292012-03-19 A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter Gao, Chen Pan, Ming-Ming Lei, Yan-Jun Tian, Li-Qing Jiang, Hui-Ying Li, Xiao-Li Shi, Qi Tian, Chan Yuan, Yu-Kang Fan, Gui-Xiang Dong, Xiao-Ping BMC Mol Biol Research Article BACKGROUND: The human papillomavirus (HPV) E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa) substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. RESULTS: CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA) showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. CONCLUSIONS: These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation. BioMed Central 2012-02-15 /pmc/articles/PMC3307029/ /pubmed/22333459 http://dx.doi.org/10.1186/1471-2199-13-5 Text en Copyright ©2012 Gao et al; BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gao, Chen Pan, Ming-Ming Lei, Yan-Jun Tian, Li-Qing Jiang, Hui-Ying Li, Xiao-Li Shi, Qi Tian, Chan Yuan, Yu-Kang Fan, Gui-Xiang Dong, Xiao-Ping A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title | A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title_full | A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title_fullStr | A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title_full_unstemmed | A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title_short | A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
title_sort | point mutation in the dna-binding domain of hpv-2 e2 protein increases its dna-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307029/ https://www.ncbi.nlm.nih.gov/pubmed/22333459 http://dx.doi.org/10.1186/1471-2199-13-5 |
work_keys_str_mv | AT gaochen apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT panmingming apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT leiyanjun apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT tianliqing apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT jianghuiying apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT lixiaoli apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT shiqi apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT tianchan apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT yuanyukang apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT fanguixiang apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT dongxiaoping apointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT gaochen pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT panmingming pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT leiyanjun pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT tianliqing pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT jianghuiying pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT lixiaoli pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT shiqi pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT tianchan pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT yuanyukang pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT fanguixiang pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter AT dongxiaoping pointmutationinthednabindingdomainofhpv2e2proteinincreasesitsdnabindingcapacityandreversesitstranscriptionalregulatoryactivityontheviralearlypromoter |